Pylon Fuel Injector Design for a Scramjet Combustor

Author(s):  
Jason Doster ◽  
Paul King ◽  
Mark Gruber ◽  
Raymond Maple
Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121425
Author(s):  
Obula Reddy Kummitha ◽  
K.M. Pandey

10.2172/7176 ◽  
1998 ◽  
Author(s):  
A F SAROFIM ◽  
R LISAUSKAS ◽  
D RILEY ◽  
E G EDDINGS ◽  
J BROUWER ◽  
...  

1993 ◽  
Vol 115 (3) ◽  
pp. 554-562 ◽  
Author(s):  
L. H. Cowell ◽  
K. O. Smith

Development of a lean-premixed, liquid-fueled combustor is in progress to achieve ultra-low NOx emissions at typical gas turbine operating conditions. A filming fuel injector design was tested on a bench scale can combustor to evaluate critical design and operating parameters for low-emissions performance. Testing was completed using No. 2 diesel. Key design variables tested include premixing length, swirler angle, injector centerbody diameter, and reduced liner cooling. NOx emissions below 12 ppmv at 9 bar pressure were measured. Corresponding CO levels were 50 ppmv. An optimized injector design was fabricated for testing in a three injector sector of an annular combustor. Operating parameters and test results are discussed in the paper.


Author(s):  
Chris A. Satkoski ◽  
Gregory M. Shaver ◽  
Ranjit More ◽  
Peter Meckl ◽  
Douglas Memering ◽  
...  

As engine designers look for ways to improve efficiency and reduce emissions, piezoelectric actuated fuel injectors for common rail diesel engines have shown to have improved response characteristics over solenoid actuated injectors and may allow for enhanced control of combustion through multipulse, closely spaced injections or rate shaping. This paper outlines the development of an 11 state simulation model for a piezoelectric fuel injector and associated driver that can be used for injector design and control system verification. Nonmeasureable states of the model are plotted and analyzed, while measurable quantities including injection rate, piezo stack voltage, and piezo stack current are validated against experimental injector rig data for two different rail pressures.


2015 ◽  
Vol 18 (4) ◽  
pp. 1181-1210 ◽  
Author(s):  
Juan-Chen Huang ◽  
Yu-Hsuan Lai ◽  
Jeng-Shan Guo ◽  
Jaw-Yen Yang

AbstractThe non-equilibrium chemical reacting combustion flows of a proposed long slender scramjet system were numerically studied by solving the turbulent Reynolds averaged Navier-Stokes (RANS) equations. The Spalart-Allmaras one equation turbulence model is used which produces better results for near wall and boundary layer flow field problems. The lower-upper symmetric Gauss-Seidel implicit scheme, which enables results converge efficiently under steady state condition, is combined with the weighted essentially non-oscillatory (WENO) scheme to yield an accurate simulation tool for scramjet combustion flow field analysis. Using the WENO schemes high-order accuracy and its non-oscillatory solution at flow discontinuities, better resolution of the hypersonic flow problems involving complex shock-shock/shock-boundary layer interactions inside the flow path, can be achieved. Two types of scramjet combustor with cavity-based and strut-based fuel injector were considered as the testing models. The flow characteristics with and without combustion reactions of the two types combustor model were studied with a transient hydrogen/oxygen combustion model. The detailed results of aerodynamic data are obtained and discussed, moreover, the combustion properties of varying the equivalent ratio of hydrogen, including the concentration of reacting species, hydrogen and oxygen, and the reacting products, water, are demonstrated to study the combustion process and performance of the combustor. The comparisons of flow field structures, pressure on wall and velocity profiles between the experimental data and the solutions of the present algorithms, showed qualitatively as well as the quantitatively in good agreement, and validated the adequacy of the present simulation tool for hypersonic scramjet reacting flow analysis.


2012 ◽  
Vol 482-484 ◽  
pp. 1943-1946
Author(s):  
Li Dan Chen ◽  
Huang Xiang Shan

Through the discussion of main shortages of the high-speed electromagnetic valve used in electronic fuel injection system, the author introduced a new design thought of fuel injector based on 2D technology. Axial displacement of controlling valve was used to control the volume of gushing oil, while radial revolution of spool valve was used to change the time of injection. Additionally, mathematic modeling and MATLAB simulating indicated that, the injector designed based on 2D technology acquired the advantages of quick response and also realized the ideal shape of fuel injection rate.


Sign in / Sign up

Export Citation Format

Share Document