Data-driven Reconstruction of Velocity Field around Airfoil using Unsteady Surface Pressure Measurement

2022 ◽  
Author(s):  
Shintaro Goto ◽  
Kumi Nakai ◽  
Naoki Kanda ◽  
Yuto Iwasaki ◽  
Taku Nonomura ◽  
...  
2004 ◽  
Vol 128 (2) ◽  
pp. 261-272 ◽  
Author(s):  
Carmen E. Kachel ◽  
John D. Denton

This paper presents the results of a numerical and experimental investigation of the unsteady pressure field in a three-stage model of a high pressure steam turbine. Unsteady surface pressure measurements were taken on a first and second stage stator blade, respectively. The measurements in the blade passage were supplemented by time resolved measurements between the blade rows. The explanation of the origin of the unsteady pressure fluctuations was supported by unsteady three-dimensional computational fluid dynamic calculations of which the most extensive calculation was performed over two stages. The mechanisms affecting the unsteady pressure field were: the potential field frozen to the upstream blade row, the pressure waves originating from changes in the potential pressure field, the convected unsteady velocity field, and the passage vortex of the upstream blade row. One-dimensional pressure waves and the unsteady variation of the pitchwise pressure gradient due to the changing velocity field were the dominant mechanisms influencing the magnitude of the surface pressure fluctuations. The magnitude of these effects had not been previously anticipated to be more important than other recognized effects.


Author(s):  
Michael Goody ◽  
Theodore Farabee ◽  
Yu-Tai Lee

The unsteady surface pressures caused by turbulent boundary layer flow are a source of sound and vibration. Unsteady surface pressure measurements at locations distributed on the surface of a ship model hull were carried out in order to characterize this source. The pressure measurement locations were distributed over the hull surface from 15% to 70% of the model length. There were several additional pressure measurement locations on the hull surface adjacent to the bow wave. The measurements were performed in the David Taylor Model Basin. The surface pressure spectra collapse to a single curve when scaled by canonical boundary layer variables at measurement locations aft of the bow wave. Additionally, measurements at several of these locations indicate that the pressure sources are convected at 50% to 80% of the free-stream velocity. Both of these observations are similar to equilibrium turbulent boundary layers. The measured surface pressure spectra compare well to predictions done using an empirical model that is based on historical, equilibrium, surface pressure spectra. At low frequencies, the measured surface pressure spectra also compare well to prediction done at lower Reynolds number using a Reynolds-Averged Navier-Stokes Statistical Model.


Author(s):  
Carmen E. Kachel ◽  
John D. Denton

This paper presents the results of a numerical and experimental investigation of the unsteady pressure field in a three-stage model of a high pressure steam turbine. Unsteady surface pressure measurements were taken on a first and second stage stator blade respectively. The measurements in the blade passage were supplemented by time resolved measurements between the blade rows. The explanation of the origin of the unsteady pressure fluctuations was supported by unsteady three-dimensional computational fluid dynamic calculations of which the most extensive calculation was performed over two stage. The mechanisms affecting the unsteady pressure field were: the potential field frozen to the upstream blade row, the pressure waves originating from changes in the potential pressure field, the convected unsteady velocity field and the passage vortex of the upstream blade row. One-dimensional pressure waves and the unsteady variation of the pitchwise pressure gradient due to the changing velocity field were the dominant mechanisms influencing the magnitude of the surface pressure fluctuations. The magnitude of these effects had not been previously anticipated to be more important than other recognized effects.


2021 ◽  
Vol 263 (1) ◽  
pp. 5650-5663
Author(s):  
Hasan Kamliya Jawahar ◽  
Syamir Alihan Showkat Ali ◽  
Mahdi Azarpeyvand

Experimental measurements were carried out to assess the aeroacoustic characteristics of a 30P30N high-lift device, with particular attention to slat tonal noise. Three different types of slat modifications, namely slat cove filler, serrated slat cusp, and slat finlets have been experimentally examined. The results are presented for an angle of attack of α = 18 at a free-stream velocity of U = 30 m/s, which corresponds to a chord-based Reynolds number of Re = 7 x 10. The unsteady surface pressure near the slat region and far-field noise were made simultaneously to gain a deeper understanding of the slat noise generation mechanisms. The nature of the low-frequency broadband hump and the slat tones were investigated using higher-order statistical approaches for the baseline 30P30N and modified slat configurations. Continuous wavelet transform of the unsteady surface pressure fluctuations along with secondary wavelet transform of the broadband hump and tones were carried out to analyze the intermittent events induced by the tone generating resonant mechanisms. Stochastic analysis of the wavelet coefficient modulus of the surface pressure fluctuations was also carried out to demonstrate the inherent differences of different tonal frequencies. An understanding into the nature of the noise generated from the slat will help design the new generation of quite high-lift devices.


Author(s):  
Toshinori Watanabe ◽  
Toshihiko Azuma ◽  
Seiji Uzawa ◽  
Takehiro Himeno ◽  
Chihiro Inoue

A fast-response pressure-sensitive paint (PSP) technique was applied to the measurement of unsteady surface pressure of an oscillating cascade blade in a transonic flow. A linear cascade was used, and its central blade was oscillated in a translational manner. The unsteady pressure distributions of the oscillating blade and two stationary neighbors were measured using the fast-response PSP technique, and the unsteady aerodynamic force on the blade was obtained by integrating the data obtained on the pressures. The measurements made with the PSP technique were compared with those obtained by conventional methods for the purpose of validation. From the results, the PSP technique was revealed to be capable of measuring the unsteady surface pressure, which is used for flutter analysis in transonic conditions.


2015 ◽  
Vol 741 ◽  
pp. 509-512
Author(s):  
Guo Ping Li ◽  
Ke Ke Gao ◽  
Ke Yang ◽  
Yong Hui Xie

The unsteady flow parameters in control stage of partial admission are analyzed in details with full 3-D numerical simulation. The full annulus structure of air turbine in partial admission is modeled due to the unsymmetrical geometry. The partial admission is accomplished through the inlet blocked using segmental arc. The unsteady surface pressure changes of eight blades in the transition regions which demonstrate the power output ability are presented. That the entropy rise associated with the losses at different cross mainly caused by mixing losses and flow separation in partial admission is analyzed to estimate the efficiency distribution.


Sign in / Sign up

Export Citation Format

Share Document