Computations of the BeVERLI Hill Three-dimensional Separating Flow Model Validation Cases

2022 ◽  
Author(s):  
Aldo Gargiulo ◽  
Thomas A. Ozoroski ◽  
Thomas Hallock ◽  
Ali Haghiri ◽  
Richard D. Sandberg ◽  
...  
1999 ◽  
Vol 1 ◽  
pp. S86-S86
Author(s):  
R DESIMONE ◽  
G GLOMBITZA ◽  
C VAHL ◽  
H MEINZER ◽  
S HAGL

1973 ◽  
Vol 95 (3) ◽  
pp. 415-421 ◽  
Author(s):  
A. J. Wheeler ◽  
J. P. Johnston

Predictions have been made for a variety of experimental three-dimensional boundary layer flows with a single finite difference method which was used with three different turbulent stress models: (i) an eddy viscosity model, (ii) the “Nash” model, and (iii) the “Bradshaw” model. For many purposes, even the simplest stress model (eddy viscosity) was adequate to predict the mean velocity field. On the other hand, the profile of shear stress direction was not correctly predicted in one case by any model tested. The high sensitivity of the predicted results to free stream pressure gradient in separating flow cases is demonstrated.


2021 ◽  
pp. 91-97
Author(s):  
V. V. Suskin ◽  
A. V. Rastorguev ◽  
I. V. Kapyrin

This article discusses a three-dimensional groundwater flow model of a deep disposal facility at Severny test site. The three-dimensional model is a part of the certified software GEOPOLIS, based on the hydrogeological code GeRa (Geomigration of Radionuclides) serving as the calculation engine. This study describes the hydrogeological patterning of the groundwater flow model, as well as the results of calibration and verification of the model water heads with respect to the data of monitoring for more than 40 years of the deep repository exploitation. The article begins with a brief overview of the previously developed hydrogeological models of this object and continues with a description of the geological structure of the territory, and with a substantiation of the boundaries and parameters of the model. The results of groundwater flow modeling, model calibration, verification and estimation of discrepancy between the model results and monitoring data are shown. The comparison of the modeled and observed water heads in the stationary conditions (before the start of injection) and during operation of the deep repository allows making conclusion on the quality of calibration.


2021 ◽  
Vol 10 (9) ◽  
pp. 3273-3282
Author(s):  
M.E.H. Hafidzuddin ◽  
R. Nazar ◽  
N.M. Arifin ◽  
I. Pop

The problem of steady laminar three-dimensional stagnation-point flow on a permeable stretching/shrinking sheet with second order slip flow model is studied numerically. Similarity transformation has been used to reduce the governing system of nonlinear partial differential equations into the system of ordinary (similarity) differential equations. The transformed equations are then solved numerically using the \texttt{bvp4c} function in MATLAB. Multiple solutions are found for a certain range of the governing parameters. The effects of the governing parameters on the skin friction coefficients and the velocity profiles are presented and discussed. It is found that the second order slip flow model is necessary to predict the flow characteristics accurately.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2399 ◽  
Author(s):  
Fengbo Yang ◽  
Xinyu Xue ◽  
Chen Cai ◽  
Zhu Sun ◽  
Qingqing Zhou

In recent years, multirotor unmanned aerial vehicles (UAVs) have become more and more important in the field of plant protection in China. Multirotor unmanned plant protection UAVs have been widely used in vast plains, hills, mountains, and other regions, and become an integral part of China’s agricultural mechanization and modernization. The easy takeoff and landing performances of UAVs are urgently required for timely and effective spraying, especially in dispersed plots and hilly mountains. However, the unclearness of wind field distribution leads to more serious droplet drift problems. The drift and distribution of droplets, which depend on airflow distribution characteristics of UAVs and the droplet size of the nozzle, are directly related to the control effect of pesticide and crop growth in different growth periods. This paper proposes an approach to research the influence of the downwash and windward airflow on the motion distribution of droplet group for the SLK-5 six-rotor plant protection UAV. At first, based on the Navier-Stokes (N-S) equation and SST k–ε turbulence model, the three-dimensional wind field numerical model is established for a six-rotor plant protection UAV under 3 kg load condition. Droplet discrete phase is added to N-S equation, the momentum and energy equations are also corrected for continuous phase to establish a two-phase flow model, and a three-dimensional two-phase flow model is finally established for the six-rotor plant protection UAV. By comparing with the experiment, this paper verifies the feasibility and accuracy of a computational fluid dynamics (CFD) method in the calculation of wind field and spraying two-phase flow field. Analyses are carried out through the combination of computational fluid dynamics and radial basis neural network, and this paper, finally, discusses the influence of windward airflow and droplet size on the movement of droplet groups.


Sign in / Sign up

Export Citation Format

Share Document