Vortex Dynamics Using the Principle of Least Action

2022 ◽  
Author(s):  
Nabil M. Khalifa ◽  
Haitham E. Taha
Author(s):  
David D. Nolte

Galileo’s parabolic trajectory launched a new approach to physics that was taken up by a new generation of scientists like Isaac Newton, Robert Hooke and Edmund Halley. The English Newtonian tradition was adopted by ambitious French iconoclasts who championed Newton over their own Descartes. Chief among these was Pierre Maupertuis, whose principle of least action was developed by Leonhard Euler and Joseph Lagrange into a rigorous new science of dynamics. Along the way, Maupertuis became embroiled in a famous dispute that entangled the King of Prussia as well as the volatile Voltaire who was mourning the death of his mistress Emilie du Chatelet, the lone female French physicist of the eighteenth century.


Author(s):  
Jerzy Warminski ◽  
Lukasz Kloda ◽  
Jaroslaw Latalski ◽  
Andrzej Mitura ◽  
Marcin Kowalczuk

AbstractNonlinear dynamics of a rotating flexible slender beam with embedded active elements is studied in the paper. Mathematical model of the structure considers possible moderate oscillations thus the motion is governed by the extended Euler–Bernoulli model that incorporates a nonlinear curvature and coupled transversal–longitudinal deformations. The Hamilton’s principle of least action is applied to derive a system of nonlinear coupled partial differential equations (PDEs) of motion. The embedded active elements are used to control or reduce beam oscillations for various dynamical conditions and rotational speed range. The control inputs generated by active elements are represented in boundary conditions as non-homogenous terms. Classical linear proportional (P) control and nonlinear cubic (C) control as well as mixed ($$P-C$$ P - C ) control strategies with time delay are analyzed for vibration reduction. Dynamics of the complete system with time delay is determined analytically solving directly the PDEs by the multiple timescale method. Natural and forced vibrations around the first and the second mode resonances demonstrating hardening and softening phenomena are studied. An impact of time delay linear and nonlinear control methods on vibration reduction for different angular speeds is presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Soon Ho Kim ◽  
Jong Won Kim ◽  
Hyun Chae Chung ◽  
MooYoung Choi

AbstractThe principle of least effort has been widely used to explain phenomena related to human behavior ranging from topics in language to those in social systems. It has precedence in the principle of least action from the Lagrangian formulation of classical mechanics. In this study, we present a model for interceptive human walking based on the least action principle. Taking inspiration from Lagrangian mechanics, a Lagrangian is defined as effort minus security, with two different specific mathematical forms. The resulting Euler–Lagrange equations are then solved to obtain the equations of motion. The model is validated using experimental data from a virtual reality crossing simulation with human participants. We thus conclude that the least action principle provides a useful tool in the study of interceptive walking.


2000 ◽  
Vol 142 (1-4) ◽  
pp. 235-243 ◽  
Author(s):  
B. Tabarrok ◽  
W. L. Cleghorn

Author(s):  
Petro Lezhniuk ◽  
Vyacheslav Komar ◽  
Natalya Sobchuk ◽  
Olena Sikorska

The article proposes to use of a combination of the criterion method and Markov processes to evaluate the quality of functioning of renewable energy sources (RES) in the form of integrated readiness characteristic of the electricity network with RES or a local electrical system (LES). This is possible throughthe analysis of the problems of ensuring the quality of electricity supply in the conditions of intensive development of RES and defined by the qualimetric characteristics of the electricity networks, which are important for the provision of quality electricity. This contribute the development of generalizedsolutions and network development strategies, especially when it comes to building RES. The components of the integral index are determined as the probability of matching the actual regime to the "ideal". The "ideal" mode is determined on the basis of the principle of least action and corresponds to the circuit diagram of the network formed by the r-scheme. The basis thus determined in this way reduces the subjectivity of both evaluations and decisions taken on the basis of it.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1472
Author(s):  
Sergey V. Krivovichev

Modularity is an important construction principle of many inorganic crystal structures that has been used for the analysis of structural relations, classification, structure description and structure prediction. The principle of maximal simplicity for modular inorganic crystal structures can be formulated as follows: in a modular series of inorganic crystal structures, the most common and abundant in nature and experiments are those arrangements that possess maximal simplicity and minimal structural information. The latter can be quantitatively estimated using information-based structural complexity parameters. The principle is applied for the modular series based upon 0D (lovozerite family), 1D (biopyriboles) and 2D (spinelloids and kurchatovite family) modules. This principle is empirical and is valid for those cases only, where there are no factors that may lead to the destabilization of simplest structural arrangements. The physical basis of the principle is in the relations between structural complexity and configurational entropy sensu stricto (which should be distinguished from the entropy of mixing). It can also be seen as an analogy of the principle of least action in physics.


2021 ◽  
Author(s):  
Sayan Kombarov

The thesis of this paper is mathematical formulation of the laws of Economics with application of the principle of Least Action of classical mechanics. This paper is proposed as the rigorous mathematical approach to Economics provided by the fundamental principle of the physical science – the Principle of Least Action. This approach introduces the principle of Action into main-stream economics and allows reconcile main principles Austrian School of Economics and the laws of market, such Say’s law and marginal value and interest rate theory, with the modern results of mathematical economics, such as Capital Asset Pricing Model (CAPM), game theory and behavioral economics. This principle is well known in classical mechanics as the law of conservation of action that governs any system as a whole and all its components. It led to the revolution in physics, as it allows to derive the laws of Newtonian and quantum mechanics and probability. Ludwig von Mises defined Economics is the science of Human Action. Action is introduced into Economics by the founder of Austrian School of Economic, Carl Menger. Production or acquisition of any goods, services and assets are results of purposeful acts in the form of expenditure of work and energy in the form of flow of money and material resources. Humans take them to achieve certain desired goals with given resources and time. Any economic good and service, financial, productive, or real estate asset is the result of such action.


Sign in / Sign up

Export Citation Format

Share Document