Asymmetry of timescales, loads, and flow structures for a vertical-axis wind turbine blade

2022 ◽  
Author(s):  
Sébastien Le Fouest ◽  
David Bensason ◽  
Karen Mulleners
2022 ◽  
Author(s):  
David Bensason ◽  
Sébastien Le Fouest ◽  
Anna M. Young ◽  
Karen Mulleners

2020 ◽  
Vol 33 ◽  
pp. 3737-3745
Author(s):  
S. Seralathan ◽  
Ch. Pavan Veera Sai Ganesh ◽  
Bhanu Prakash Reddy Venganna ◽  
N. Sai Srinivas ◽  
B. Lokesh Chowdary ◽  
...  

Author(s):  
Jianyou Huang ◽  
Chia-Ou Chang ◽  
Chien-Cheng Chang

Pitch angle is one of the most important parameters of wind turbine blade. This study is aimed to investigate the effect of the pitch angle on the deformation of a VAWT. Lagrangian mechanics and Euler’s beam theory are used to derive the motion equations of linear structural vibration for straight blade vertical axis wind turbine blade with the pitch angle [Formula: see text]. The complete equations of motion take account of the 4-DOF deformation of flexural–flexural–torsion–extension as well as the material damping. Vibration analysis of generalized displacement about the equilibrium state (GDAES) is carried out with respect to the displacement of the equilibrium state (DOES), which is separated from the motion of vibration. After simplifying the equilibrium equation of 4-DOF into 1-DOF system, the exact solution of displacement [Formula: see text] of the equilibrium state is derived. The correction [Formula: see text] of [Formula: see text] due to the pitch angle and the characteristics of [Formula: see text] with constant linear speed are analyzed. Furthermore, we investigate the coupling effect of lateral bending and axial extension of the blade on [Formula: see text] is analyzed. Finally, the exact solution of [Formula: see text] is verified by the central difference method.


Sign in / Sign up

Export Citation Format

Share Document