Comparison of Surface Pressure Fluctuations from Flight and Wind Tunnel Tests on the Orion Multi-Purpose Crew Vehicle

2022 ◽  
Author(s):  
Jayanta Panda
Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 961
Author(s):  
Thomas Ahlefeldt ◽  
Stefan Haxter ◽  
Carsten Spehr ◽  
Daniel Ernst ◽  
Tobias Kleindienst

Preparing and pre-testing experimental setups for flight tests is a lengthy but necessary task. One part of this preparation is comparing newly available measurement technology with proven setups. In our case, we wanted to compare acoustic Micro-Electro-Mechanical Systems (MEMS) to large and proven surface-mounted condenser microphones. The task started with the comparison of spectra in low-speed wind tunnel environments. After successful completion, the challenge was increased to similar comparisons in a transonic wind tunnel. The final goal of performing in-flight measurements on the outside fuselage of a twin-engine turboprop aircraft was eventually achieved using a slim array of 45 MEMS microphones with additional large microphones installed on the same carrier to drawn on for comparison. Finally, the array arrangement of MEMS microphones allowed for a complex study of fuselage surface pressure fluctuations in the wavenumber domain. The study indicates that MEMS microphones are an inexpensive alternative to conventional microphones with increased potential for spatially high-resolved measurements even at challenging experimental conditions during flight tests.


2020 ◽  
Vol 99 ◽  
pp. 105772 ◽  
Author(s):  
R. Camussi ◽  
A. Di Marco ◽  
C. Stoica ◽  
M. Bernardini ◽  
F. Stella ◽  
...  

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 266-274
Author(s):  
Michael C. Goody ◽  
Roger L. Simpson ◽  
Christopher J. Chesnakas

2021 ◽  
Vol 11 (4) ◽  
pp. 1642
Author(s):  
Yuxiang Zhang ◽  
Philip Cardiff ◽  
Jennifer Keenahan

Engineers, architects, planners and designers must carefully consider the effects of wind in their work. Due to their slender and flexible nature, long-span bridges can often experience vibrations due to the wind, and so the careful analysis of wind effects is paramount. Traditionally, wind tunnel tests have been the preferred method of conducting bridge wind analysis. In recent times, owing to improved computational power, computational fluid dynamics simulations are coming to the fore as viable means of analysing wind effects on bridges. The focus of this paper is on long-span cable-supported bridges. Wind issues in long-span cable-supported bridges can include flutter, vortex-induced vibrations and rain–wind-induced vibrations. This paper presents a state-of-the-art review of research on the use of wind tunnel tests and computational fluid dynamics modelling of these wind issues on long-span bridges.


2021 ◽  
Vol 215 ◽  
pp. 104685
Author(s):  
An Miao ◽  
Li Shouying ◽  
Liu Zhiwen ◽  
Yan Banfu ◽  
Li Longan ◽  
...  

2021 ◽  
pp. 136943322110339
Author(s):  
Jian Guo ◽  
Changliang Xiao ◽  
Jiantao Li

A hill with a lattice transmission tower presents complex wind field characteristics. The commonly used computational fluid dynamics (CFD) simulations are difficult to analyze the wind resistance and dynamic responses of the transmission tower due to structural complexity. In this study, wind tunnel tests and numerical simulations are conducted to analyze the wind field of the hill and the dynamic responses of the transmission tower built on it. The hill models with different slopes are investigated by wind tunnel tests to measure the wind field characteristics, such as mean speed and turbulence intensity. The study shows that the existence of a transmission tower reduces the wind speed on the leeward slope significantly but has little effect on the windward slope. To study the dynamic behavior of the transmission tower, a hybrid analysis procedure is used by introducing the measured experimental wind information to the finite element tower model established using ANSYS. The effects of hill slope on the maximum displacement response of the tower are studied. The results show that the maximum value of the response is the largest when the hill slope is 25° compared to those when hill slope is 15° and 35°. The results extend the knowledge concerning wind tunnel tests on hills of different terrain and provide a comprehensive understanding of the interactive effects between the hill and existing transmission tower regarding to the wind field characteristics and structural dynamic responses.


Sign in / Sign up

Export Citation Format

Share Document