N2Vibrational Excitation in Atmospheric Pressure Ns Pulse and RF Plasma Jets

2022 ◽  
Author(s):  
Caleb Richards ◽  
Elijah Jans ◽  
Ilya Gulko ◽  
Keegan Orr ◽  
Igor V. Adamovich
2008 ◽  
Vol 80 (9) ◽  
pp. 1919-1930 ◽  
Author(s):  
Gheorghe Dinescu ◽  
Eusebiu R. Ionita

We report on the operation and characteristics of radio frequency (RF) plasma beam sources based on the expansion of the discharge outside of limited spaces with small interelectrode gaps. The appropriate electrode configuration, combined with high mass flow values and appropriate power levels, leads to small- or large-size plasma jets, working stably at low, intermediate, and atmospheric pressures. The sources are promising tools for a wide range of applications in thin film deposition, surface modification, and cleaning, including the case of temperature-sensitive substrates.


2020 ◽  
Vol 53 (18) ◽  
pp. 185201 ◽  
Author(s):  
I Korolov ◽  
M Leimkühler ◽  
M Böke ◽  
Z Donkó ◽  
V Schulz-von der Gathen ◽  
...  

2021 ◽  
Author(s):  
Sanjana Kerketta ◽  
Mark J. Kushner ◽  
Gaurav Nayak ◽  
Sahil Mahajan ◽  
Fujun Wang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1296
Author(s):  
Iryna Kuchakova ◽  
Maria Daniela Ionita ◽  
Eusebiu-Rosini Ionita ◽  
Andrada Lazea-Stoyanova ◽  
Simona Brajnicov ◽  
...  

Thin film deposition with atmospheric pressure plasmas is highly interesting for industrial demands and scientific interests in the field of biomaterials. However, the engineering of high-quality films by high-pressure plasmas with precise control over morphology and surface chemistry still poses a challenge. The two types of atmospheric-pressure plasma depositions of organosilicon films by the direct and indirect injection of hexamethyldisiloxane (HMDSO) precursor into a plasma region were chosen and compared in terms of the films chemical composition and morphology to address this. Although different methods of plasma excitation were used, the deposition of inorganic films with above 98% of SiO2 content was achieved for both cases. The chemical structure of the films was insignificantly dependent on the substrate type. The deposition in the afterglow of the DC discharge resulted in a soft film with high roughness, whereas RF plasma deposition led to a smoother film. In the case of the RF plasma deposition on polymeric materials resulted in films with delamination and cracks formation. Lastly, despite some material limitations, both deposition methods demonstrated significant potential for SiOx thin-films preparation for a variety of bio-related substrates, including glass, ceramics, metals, and polymers.


2011 ◽  
Vol 109 (12) ◽  
pp. 123302 ◽  
Author(s):  
J. S. Sousa ◽  
K. Niemi ◽  
L. J. Cox ◽  
Q. Th. Algwari ◽  
T. Gans ◽  
...  

2014 ◽  
Vol 11 (11) ◽  
pp. 1010-1017 ◽  
Author(s):  
Seoul Hee Nam ◽  
Hyun Wook Lee ◽  
Jin Woo Hong ◽  
Hae June Lee ◽  
Gyoo Cheon Kim

Sign in / Sign up

Export Citation Format

Share Document