Ocimum gratissimum leaf extract inhibits glycogen phosphorylase activity in streptozotocin-induced diabetic rats

Author(s):  
Shittu Shehu-Tijani
1989 ◽  
Vol 257 (1) ◽  
pp. E74-E80
Author(s):  
J. Rulfs ◽  
S. R. Jaspers ◽  
A. K. Garnache ◽  
T. B. Miller

Whereas total cardiac glycogen phosphorylase activity appears to be unaffected by severe insulin deficiency, a diabetes-induced decreased in hepatic glycogen phosphorylase activity has been demonstrated by our laboratory and others using liver extracts, isolated perfused liver, and cultured hepatocytes. The loss of activity in diabetic liver can be correlated with a drop in protein levels. Using primary cultures of cells from normal and diabetic rats and phosphorylase specific antibodies, we found a corresponding decrease in phosphorylase synthesis in diabetic hepatocytes cultured for 2 days in a serum-free, chemically defined medium. When hepatocytes are cultured in the presence of insulin, triiodothyronine, and cortisol, there is a significant recovery in the rate of phosphorylase synthesis after 3 days. Over the 3-day time period, there is no significant difference in the rate of phosphorylase degradation in normal compared with diabetic hepatocytes. Total protein synthesis in both hepatocytes and cardiomyocytes is unaffected by diabetes, as is phosphorylase synthesis in cultured cardiomyocytes.


1996 ◽  
Vol 270 (2) ◽  
pp. E328-E335 ◽  
Author(s):  
A. Chesley ◽  
G. J. Heigenhauser ◽  
L. L. Spriet

The purpose of this study was to examine the regulation (hormonal, substrate, and allosteric) of muscle glycogen phosphorylase (Phos) activity and glycogenolysis after short-term endurance training. Eight untrained males completed 6 days of cycle exercise (2 h/day) at 65% of maximal O2 uptake (Vo2max). Before and after training subjects cycled for 15 min at 80% of Vo2max, and muscle biopsies and blood samples were obtained at 0 and 30 s, 7.5 and 15 min, and 0, 5, 10, and 15 min of exercise. Vo2max was unchanged with training but citrate synthase (CS) activity increased by 20%. Muscle glycogenolysis was reduced by 42% during the 15-min exercise challenge following training (198.8 +/- 36.9 vs. 115.4 +/- 25.1 mmol/kg dry muscle), and plasma epinephrine was blunted at 15 min of exercise. The Phos a mole fraction was unaffected by training. Muscle phosphocreatine utilization and free Pi and AMP accumulations were reduced with training at 7.5 and 15 min of exercise. It is concluded that posttransformational control of Phos, exerted by reductions in substrate (free Pi) and allosteric modulator (free AMP) contents, is responsible for a blunted muscle glycogenolysis after 6 days of endurance training. The increase in CS activity suggests that the reduction of muscle glycogenolysis was due in part to an enhanced mitochondrial potential.


1989 ◽  
Vol 257 (2) ◽  
pp. R278-R283 ◽  
Author(s):  
S. P. Brooks ◽  
K. B. Storey

The glycolytic enzymes glycogen phosphorylase, phosphofructokinase (PFK), and pyruvate kinase (PK) were assessed in liver, heart, red muscle, and white muscle of aerobic and 5-h anoxic turtles (Pseudemys scripta) for changes in total activity and kinetic parameters. Anoxia induced statistically significant changes in these glycolytic enzymes in each of the four organs assayed. Compared with normoxic controls, anoxic liver showed a 3.3-fold increase in glycogen phosphorylase activity, a 1.5-fold increase in the PFK I50 value for citrate (concentration that inhibits initial activity by 50%), a 1.5-fold increase in the PFK Michaelis constant (Km) value for fructose 6-phosphate (P), and an increased maximal activity of PK. Anoxic heart muscle showed a 2.6-fold decrease in glycogen phosphorylase activity and, for PFK, a 1.7-fold decrease in the Km value for ATP and a twofold increase in the I50 value for citrate. In anoxic white muscle, PFK showed a fivefold lower Km value for fructose-6-P and a threefold lower activator concentration producing half-maximal activation (A50) for potassium phosphate than the aerobic enzyme form. Changes in anoxic white muscle PK included a twofold increase in the Km value for ADP and a 1.7-fold decrease in the I50 value for alanine. In red muscle, anoxia affected only the Km value for ATP, which was 50% higher than the value for the aerobic enzyme form. Fructose 2,6-diphosphate (P2) levels also decreased in heart muscle and increased in red and white muscle during anoxia.(ABSTRACT TRUNCATED AT 250 WORDS)


Neuroscience ◽  
1984 ◽  
Vol 12 (4) ◽  
pp. 1261-1269 ◽  
Author(s):  
C.J. Woolf ◽  
M.S. Chong ◽  
A. Ainsworth

Development ◽  
1976 ◽  
Vol 35 (2) ◽  
pp. 335-343
Author(s):  
Charles L. Rutherford

Ultra-microfluorometric techniques were adapted to follow the time sequence of glycogen degradation during the differentiation of two cell types in Dictyostelium discoideum. Glycogen content, glycogen phosphorylase activity, and inorganic phosphate accumulation were localized in specific cell types during stalk and spore development. Glycogen levels in pre-stalk cells remained constant during the pseudoplasmodium and early culmination stages of development. However, as pre-stalk cells migrated into the position of stalk formation, a cell specific degradation of glycogen was observed. The loss of glycogen from pre-stalk cells was accompanied by an increase in the activity of glycogen phosphorylase. This increase in activity from 0·04 to 0·14 moles/h/kg dry wt. occurred as pre-stalk cells entered the position of stalk formation. An inverse relationship was found between glycogen levels and inorganic phosphate (Pi) levels in the developing stalk. During the process of stalk construction, a gradient of Pi levels occurred from the apex to the base of the developing stalk. Glycogen degradation from pre-spore cells lagged behind that of pre-stalk cells. No change in pre-spore cell glycogen levels was observed until stalk construction was nearly completed. The results emphasize the importance of the physical position of a cell with respect to its composition and fate during development.


1976 ◽  
Vol 231 (4) ◽  
pp. 1285-1289 ◽  
Author(s):  
O Giger ◽  
RE McCallum

The present study was undertaken to characterize endotoxin-induced changes in carbohydrate metabolism and more specifically, to determine the contribution of glycogenolysis to the loss of liver glycogen. Female ICR mice, fasted overnight, were injected with a median lethal dose (LD50, 9 mg/kg) of endotoxin extracted from Salmonella typhimurium strain SR-11. Glycogen synthase and glycogen phosphorylase activities were measured at 0.5 and 6 h after treatment. Endotoxin treatment did not alter total glycogen synthase activity, but the amount of enzyme present in the active form was significantly lower in endotoxic mice. There was no significant increase in glycogen phosphorylase activity in endotoxin-treated mice. Glycogen phosphorylase was activated to the same extent in control and endotoxic mice by decapitation or intravenous epinephrine (25 or 1 mug/kg). The results of this study indicate no significant increase in glycogen phosphorylase activity in endotoxic mice, contraindicating enhanced glycogenolysis as a mechanism for depletion of carbohydrate following endotoxin injection. Altered activation of glycogen synthase, however, may contribute to the loss of glycogen during endotoxemia.


Sign in / Sign up

Export Citation Format

Share Document