scholarly journals Shallow and deep trap states of solvated electrons in methanol and their formation, electronic excitation, and relaxation dynamics

Author(s):  
Jinggang Lan ◽  
Yo-ichi Yamamoto ◽  
Toshinori Suzuki ◽  
Vladimir Rybkin

We present condensed-phase first-principles molecular dynamics simulations to elucidate the presence of different electron trapping sites in liquid methanol and their roles in the formation, electronic transitions, and relaxation of solvated electrons (e−met) in methanol. Excess electrons injected into liquid methanol are most likely trapped by methyl groups, but rapidly diffuse to more stable trapping sites with dangling OH bonds. After localization at the sites with one free OH bond (1OH trapping sites), reorientation of other methanol molecules increases the OH coordination number and the trap depth, and ultimately four OH bonds become coordinated with the excess electrons under thermal conditions. The simulation identified four distinct trapping states with different OH coordination numbers. The simulation results also revealed that electronic transitions of e−met are primarily due to charge transfer between electron trapping sites (cavities) formed by OH and methyl groups and that these transitions differ from hydrogenic electronic transitions involving aqueous solvated electrons (e−aq). Such charge transfer also explains the alkyl-chain-length dependence of the photoabsorption peak wavelength and the excited-state lifetime of solvated electrons in primary alcohols.

1989 ◽  
Vol 90 (8) ◽  
pp. 4413-4422 ◽  
Author(s):  
R. B. Barnett ◽  
Uzi Landman ◽  
Abraham Nitzan

Author(s):  
P. Krebs

Some years ago Jay-Gerin and Ferradini attempted to establish a correlation between the optical absorption spectrum and the mobility of excess electrons in various polar solvents (J. Chem. Phys.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2639
Author(s):  
Nadine C. Michenfelder ◽  
Christian Gienger ◽  
Melina Dilanas ◽  
Andreas Schnepf ◽  
Andreas-Neil Unterreiner

We present a comprehensive femtosecond (fs) transient absorption study of the [Ge9(Hyp)3]− (Hyp = Si(SiMe3)3) cluster solvated in tetrahydrofuran (THF) with special emphasis on intra- and intermolecular charge transfer mechanisms which can be tuned by exchange of the counterion and by dimerization of the cluster. The examination of the visible and the near infrared (NIR) spectral range reveals four different processes of cluster dynamics after UV (267/258 nm) photoexcitation related to charge transfer to solvent and localized excited states in the cluster. The resulting transient absorption is mainly observed in the NIR region. In the UV-Vis range transient absorption of the (neutral) cluster core with similar dynamics can be observed. By transferring concepts of: (i) charge transfer to the solvent known from solvated Na− in THF and (ii) charge transfer in bulk-like materials on metalloid cluster systems containing [Ge9(Hyp)3]− moieties, we can nicely interpret the experimental findings for the different compounds. The first process occurs on a fs timescale and is attributed to localization of the excited electron in the quasi-conduction band/excited state which competes with a charge transfer to the solvent. The latter leads to an excess electron initially located in the vicinity of the parent cluster within the same solvent shell. In a second step, it can recombine with the cluster core with time constants in the picosecond (ps) timescale. Some electrons can escape the influence of the cluster leading to a solvated electron or after interaction with a cation to a contact pair both with lifetimes exceeding our experimentally accessible time window of 1 nanosecond (ns). An additional time constant on a tens of ps timescale is pronounced in the UV-Vis range which can be attributed to the recombination rate of the excited state or quasi conduction band of Ge9−. In the dimer, the excess electron cannot escape the molecule due to strong trapping by the Zn cation that links the two cluster cores.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Luo ◽  
Yaoyao Han ◽  
Zongwei Chen ◽  
Yulu Li ◽  
Guijie Liang ◽  
...  

AbstractThe mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface remain poorly understood. Many seemingly contradictory results have been reported, mainly because of the complicated trap states characteristic of inorganic semiconductors and the ill-defined relative energetics between semiconductors and molecules used in these studies. Here we clarify the transfer mechanisms by performing combined transient absorption and photoluminescence measurements, both with sub-picosecond time resolution, on model systems comprising lead halide perovskite nanocrystals with very low surface trap densities as the triplet donor and polyacenes which either favour or prohibit charge transfer as the triplet acceptors. Hole transfer from nanocrystals to tetracene is energetically favoured, and hence triplet transfer proceeds via a charge separated state. In contrast, charge transfer to naphthalene is energetically unfavourable and spectroscopy shows direct triplet transfer from nanocrystals to naphthalene; nonetheless, this “direct” process could also be mediated by a high-energy, virtual charge-transfer state.


1968 ◽  
Vol 90 (8) ◽  
pp. 2184-2185 ◽  
Author(s):  
Miriam. Shirom ◽  
John E. Willard

1982 ◽  
Vol 60 (18) ◽  
pp. 2342-2350 ◽  
Author(s):  
Ah-Dong Leu ◽  
Kamal N. Jha ◽  
Gordon R. Freeman

Addition of a few percent of water to an alcohol has a relatively large effect on the shape of the optical absorption spectrum of solvated electrons in the liquid. This occurs whether the optical absorption energy in the pure alcohol is greater or smaller than that in water. Addition of up to 10 mol% of water causes EAmax in methanol and primary alcohols to decrease, while it increases in secondary and tertiary alcohols. At around 10 mol% water in primary alcohols EAmax passes through a minimum and increases again at higher water concentrations, reaching a plateau at about 30 mol% and remaining constant up to about 95 mol% water; over the last part of the composition range to pure water EAmax decreases slightly. The behavior in secondary and tertiary alcohols containing > 30 mol% water is similar to that in primary alcohols. The width of the band at half height W1/2 is divided at EAmax into "red side" and "blue side" portions Wr, and Wb, respectively. In methanol and in primary and secondary alcohols, addition of up to 30 mol% of water greatly reduces Wb but has relatively little effect on Wr. At > 30 mol% water Wb and Wr are similar to those in pure water. In tertiary butyl alcohol the band width is similar to that in pure water, so addition of water to the alcohol makes little change in the band width. The water/alcohol composition effects on the es− absorption band parameters are attributed to changes in solvent structure. This is especially evidenced by the minimum in EAmax at 10 mol% water in a primary alcohol. The changes in band asymmetry Wb/Wr indicate that the types of electronic transition on the low and high energy sides of the band are different.


Sign in / Sign up

Export Citation Format

Share Document