Benchmarking Density Functionals, Basis Sets, and Solvent Models in Predicting Thermodynamic Hydricities of Organic Hydrides

Author(s):  
Christina Yeo ◽  
Minh Nguyen ◽  
Lee-Ping Wang

Many renewable energy technologies, such as hydrogen gas synthesis and carbon dioxide reduction, rely on chemical reactions involving hydride anions. When selecting molecules to be used in such applications, an important quantity to consider is the thermodynamic hydricity, which is the free energy required for a species to donate a hydride anion. Theoretical calculations of thermodynamic hydricity depend on several parameters, mainly the density functional, basis set, and solvent model. In order to assess the effects of the above three parameters, we carry out hydricity calculations for a set of molecules with known experimental hydricity values, generate linear �fits, and compare the R-squared, root-mean-squared error, and Akaike Information Criterion across different combinations of density functionals, basis sets, and solvent models. Based on these results we are able to quantify the accuracy of theoretical predictions of hydricity and recommend the parameters with the best compromise between accuracy and computational cost.

2020 ◽  
Author(s):  
Peter Kraus

Improving results of correlated wavefunction theory calculations by extrapolating from successive basis sets is nowadays a common practice. However, such approaches are uncommon in density functional theory, especially due its faster convergence towards the basis set limit. In this work I present approaches for basis set extrapolation in density functional theory that enable users to obtain results of 4-zeta quality from 3- and 2-zeta calculations, i.e. at a fraction of the computational cost. The extrapolation techniques work well with modern density functionals and common basis sets.<br>


2020 ◽  
Author(s):  
Peter Kraus

Improving results of correlated wavefunction theory calculations by extrapolating from successive basis sets is nowadays a common practice. However, such approaches are uncommon in density functional theory, especially due its faster convergence towards the basis set limit. In this work I present approaches for basis set extrapolation in density functional theory that enable users to obtain results of 4-zeta quality from 3- and 2-zeta calculations, i.e. at a fraction of the computational cost. The extrapolation techniques work well with modern density functionals and common basis sets.<br>


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5174
Author(s):  
Frederick Stein ◽  
Jürg Hutter ◽  
Vladimir V. Rybkin

Intermolecular interactions play an important role for the understanding of catalysis, biochemistry and pharmacy. Double-hybrid density functionals (DHDFs) combine the proper treatment of short-range interactions of common density functionals with the correct description of long-range interactions of wave-function correlation methods. Up to now, there are only a few benchmark studies available examining the performance of DHDFs in condensed phase. We studied the performance of a small but diverse selection of DHDFs implemented within Gaussian and plane waves formalism on cohesive energies of four representative dispersion interaction dominated crystal structures. We found that the PWRB95 and ωB97X-2 functionals provide an excellent description of long-ranged interactions in solids. In addition, we identified numerical issues due to the extreme grid dependence of the underlying density functional for PWRB95. The basis set superposition error (BSSE) and convergence with respect to the super cell size are discussed for two different large basis sets.


2008 ◽  
Vol 07 (05) ◽  
pp. 943-951 ◽  
Author(s):  
XIAO-HONG LI ◽  
ZHENG-XIN TANG ◽  
ABRAHAM F. JALBOUT ◽  
XIAN-ZHOU ZHANG ◽  
XIN-LU CHENG

Quantum chemical calculations are used to estimate the bond dissociation energies (BDEs) for 15 thiol compounds. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86, PBE0) methods and the complete basis set (CBS-Q) method together with 6-311G** basis set. It is demonstrated that B3P86 and CBS-Q methods are accurate for computing the reliable BDEs for thiol compounds. In order to test whether the non-local BLYP method suggested by Fu et al.19 is general for our study and whether B3P86 method has a low basis set sensitivity, the BDEs for seven thiol compounds are also calculated using BLYP/6-31+G* and B3P86 method with 6-31+G*, 6-31+G**, and 6-311+G** basis sets for comparison. The obtained results are compared with the available experimental results. It is noted that B3P86 method is not sensitive to the basis set. Considering the inevitable computational cost of CBS-Q method and the reliability of the B3P86 calculations, B3P86 method with a moderate or a larger basis set may be more suitable to calculate the BDEs of the C–SH bond for thiol compounds.


Author(s):  
María G. Andino ◽  
Mariela I. Profeta ◽  
Jorge M. Romero ◽  
Nelly L. Jorge ◽  
Eduardo A. Castro

The 2,4-dichlorophenoxyacetic acid (2,4-D) is applied to and recovered from the leaf surfaces of garden bean and corn plants. This paper examines the theoretical study of the 2,4-D IR and UV spectra as well as the determination of its optimized molecular structure. Theoretical calculations are performed at the density functional theory (DFT) levels. The different structural and electronic effects determining the molecular stability of the conformers are discussed in a comparative fashion. The optimized geometry was calculated via the B3LYP method with 6-311G(d,p) and 6-311++G(d,p) basis sets and the FT-IR spectra was calculated by the density functional B3LYP method with the 6-311++G(d,p) basis set. The scaled theoretical wavenumbers show good agreement with the experimental values. A detailed interpretation of the infrared spectra of 2,4-D is reported.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3931 ◽  
Author(s):  
Kacper Rzepiela ◽  
Aneta Buczek ◽  
Teobald Kupka ◽  
Małgorzata A. Broda

We report on the density functional theory (DFT) modelling of structural, energetic and NMR parameters of uracil and its derivatives (5-halogenouracil (5XU), X = F, Cl, Br and I) in vacuum and in water using the polarizable continuum model (PCM) and the solvent model density (SMD) approach. On the basis of the obtained results, we conclude that the intramolecular electrostatic interactions are the main factors governing the stability of the six tautomeric forms of uracil and 5XU. Two indices of aromaticity, the harmonic oscillator model of aromaticity (HOMA), satisfying the geometric criterion, and the nuclear independent chemical shift (NICS), were applied to evaluate the aromaticity of uracil and its derivatives in the gas phase and water. The values of these parameters showed that the most stable tautomer is the least aromatic. A good performance of newly designed xOPBE density functional in combination with both large aug-cc-pVQZ and small STO(1M)−3G basis sets for predicting chemical shifts of uracil and 5-fluorouracil in vacuum and water was observed. As a practical alternative for calculating the chemical shifts of challenging heterocyclic compounds, we also propose B3LYP calculations with small STO(1M)−3G basis set. The indirect spin–spin coupling constants predicted by B3LYP/aug-cc-pVQZ(mixed) method reproduce the experimental data for uracil and 5-fluorouracil well.


2016 ◽  
Vol 94 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Wiem Felah Gtari ◽  
Bahoueddine Tangour

Theoretical calculations have been achieved to study the interaction between the confined F2 molecule along the nanotube axis and perpendicular to it and armchair (n,n) single-walled carbon nanotubes with n = 4, 5, 6, 7, and 8 and the zig-ag nanotube (9,0) using the density functional theory method with the CAM-B3LYP functional and both cc-pVQZ and STO-3G basis sets. The interaction of the F2 molecule with the nanotube is different according to the molecular orientation, the chirality of the carbon nanotube, and the confinement space extension. These results interpreted by means of van der Waals interactions reveal anisotropic and competitive behavior at the nanometric level. The π electrons of the nanotube interact with the lone pairs of F2 highlighting its lateral polarizability. The encapsulated F2 molecule is stable along and perpendicular to the nanotube (5,5) and (6,6) axis. The best stabilization energy is obtained fornanotube (5,5) at the perpendicular position using the cc-pVQZ basis set.


2005 ◽  
Vol 04 (03) ◽  
pp. 823-832 ◽  
Author(s):  
JUAN F. VAN DER MAELEN URÍA ◽  
JAVIER RUIZ ◽  
SANTIAGO GARCÍA-GRANDA

The experimental geometry obtained from single-crystal X-ray diffraction data for a metalladiphosphanyl carbene precursor is compared with the results of theoretical calculations made at the ab initio level by using Hartree–Fock (HF) and Density Functional Theory (DFT) methods over the carbene itself. Theoretical geometry optimizations for the singlet ground state of [ Mn(CO)4(PH2)2C: ]+ have been performed with several hybrid functionals and basis sets. Calculated geometries showed a perfect C 2v symmetry in the highest levels of calculation and were somewhat relaxed when compared with the experimental ones; for instance, with the largest basis set, the P–C–P angle found was 124.8°, whereas C–P bond distances were both 1.667 Å, compared to 103.5(3)° and 1.718(5) Å, respectively, from the experimental data. The absence of a ligand attached to the C : atom in the calculated structure, which is present in the form of iodine in the experimental complex, is probably responsible, to a certain extent, for the discrepancies. In addition to the structural computations, in order to theoretically quantify the highly electrophilic character expected for the carbene, electron affinities were calculated and found to be between 6.24 eV and 6.97 eV at different DFT levels of calculation, which confirmed the expectations. In this respect, a comparison with the analogous [Ru(CNH)4(PH2)2C:]2+ carbene is also made, showing the possibility of experimentally trapping the manganese carbene.


2007 ◽  
Vol 06 (04) ◽  
pp. 675-685 ◽  
Author(s):  
XIAO-HONG LI ◽  
RUI-ZHOU ZHANG ◽  
XIAN-ZHOU ZHANG ◽  
XIN-LU CHENG ◽  
XIANG-DONG YANG

The heats of formation (HOFs) for 15 thiol compounds are calculated by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods with 6-311G** basis set and the complete basis set (CBS-Q) method. It is demonstrated that the B3P86 and CBS-Q methods are accurate to compute the reliable HOFs for thiol compounds. In order to test whether the B3P86 method has a low basis set sensitivity, the HOFs for six thiol compounds are also calculated by using the B3P86 method with 6-31+G*, 6-31+G**, and 6-311+G** basis sets for comparison. We also extend our study by employing the nonlocal BLYP method together with 6-31+G* basis set to calculate the HOFs for thiol compounds. The obtained results are compared with the experimental results. It is noted that the B3P86 method is not sensitive to the basis sets. Considering the inevitably computational cost of CBS-Q method and the reliability of the B3P86 calculation, the B3P86 method with a moderate or a larger basis set such as 6-311G** and 6-311+G** may be more suitable to calculate the HOFs of thiol compounds. In addition, we believe that the maximum error associated with the calculated HOFs is less than 6 kcal/mol for the B3P86/6-311G** method and it is expected that the error bar is more likely 1–5 kcal/mol for the HOFs of thiol compounds.


2019 ◽  
Author(s):  
Mark Iron ◽  
Trevor Janes

A new database of transition metal reaction barrier heights – MOBH35 – is presented. Benchmark energies (forward and reverse barriers and reaction energy) are calculated using DLPNO-CCSD(T) extrapolated to the complete basis set limit using a Weizmann1-like scheme. Using these benchmark energies, the performance of a wide selection of density functional theory (DFT) exchange–correlation functionals, including the latest from the Truhlar and Head-Gordon groups, is evaluated. It was found, using the def2-TZVPP basis set, that the ωB97M-V (MAD 1.8 kcal/mol), ωB97X-V (MAD 2.1 kcal/mol) and SCAN0 (MAD 2.1 kcal/mol) hybrid functionals are recommended. The double-hybrid functionals PWPB95 (MAD 1.6 kcal/mol) and B2K-PLYP (MAD 1.8 kcal/mol) did perform slightly better but this has to be balanced by their increased computational cost.


Sign in / Sign up

Export Citation Format

Share Document