scholarly journals Synthesis and Columnar Organization of Partially Fluorinated Dehydrobenz[18]annulenes

Author(s):  
Sumitra Karki ◽  
Lucas J. Karas ◽  
Xiqu Wang ◽  
Judy I. Wu ◽  
Ognjen Š. Miljanić

Two diamond-shaped and partially fluorinated dehydrobenz[18]annulene macrocycles have been synthesized through a one-pot synthesis relying on fourfold Sonogashira coupling. Single crystal structures of the prepared macrocycles show continuous columnar stacks of these molecules that are mediated by the fluoroarene–alkyne, arene–alkyne, fluoroarene–fluoroarene, and alkyne–alkyne [π···π] interactions instead of the expected fluoroarene–arene [π···π] interaction.

Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 182-198
Author(s):  
Dalila Rocco ◽  
Samantha Novak ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

We report the preparation and characterization of 4′-([1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (1), 4′-(4′-fluoro-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (2), 4′-(4′-chloro-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (3), 4′-(4′-bromo-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (4), and 4′-(4′-methyl-[1,1′-biphenyl]-4-yl)-3,2′:6′,3″-terpyridine (5), and their reactions with copper(II) acetate. Single-crystal structures of the [Cu2(μ-OAc)4L]n 1D-coordination polymers with L = 1–5 have been determined, and powder X-ray diffraction confirms that the single crystal structures are representative of the bulk samples. [Cu2(μ-OAc)4(1)]n and [Cu2(μ-OAc)4(2)]n are isostructural, and zigzag polymer chains are present which engage in π-stacking interactions between [1,1′-biphenyl]pyridine units. 1D-chains nest into one another to give 2D-sheets; replacing the peripheral H in 1 by an F substituent in 2 has no effect on the solid-state structure, indicating that bifurcated contacts (H...H for 1 or H...F for 2) are only secondary packing interactions. Upon going from [Cu2(μ-OAc)4(1)]n and [Cu2(μ-OAc)4(2)]n to [Cu2(μ-OAc)4(3)]n, [Cu2(μ-OAc)4(4)]n, and [Cu2(μ-OAc)4(5)]n·nMeOH, the increased steric demands of the Cl, Br, or Me substituent induces a switch in the conformation of the 3,2′:6′,3″-tpy metal-binding domain, and a concomitant change in dominant packing interactions to py–py and py–biphenyl face-to-face π-stacking. The study underlines how the 3,2′:6′,3″-tpy domain can adapt to different steric demands of substituents through its conformational flexibility.


2017 ◽  
Vol 2017 (27) ◽  
pp. 4026-4034 ◽  
Author(s):  
Mirza Feroz Baig ◽  
Siddiq Pasha Shaik ◽  
Namballa Hari Krishna ◽  
Neeraj Kumar Chouhan ◽  
Abdullah Alarifi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document