scholarly journals Sequential Cesium Incorporation for Highly Efficient Formamidinium-Cesium Perovskite Solar Cells

Author(s):  
Yong Wang ◽  
Yixin Zhao ◽  
Feng Gao ◽  
Haoran Chen ◽  
Yingping fan ◽  
...  

Although pure formamidinium iodide perovskite (FAPbI3) possesses an optimal gap for photovoltaics, their poor phase stability limits the long-term operational stability of the devices. A promising approach to enhance their phase stability is to incorporate cesium into FAPbI3. However, state-of-the-art formamidinium-cesium (FA-Cs) iodide perovskites demonstrate much worse efficiency compared with FAPbI3, limited by different crystallization dynamics of formamidinium and cesium, which result in poor composition homogeneity and high trap densities. We develop a novel strategy of crystallization decoupling processes of formamidinium and cesium via a sequential cesium incorporation approach. As such, we obtain highly reproducible and highly efficient solar cells based on FA1-xCsxPbI3 films, with uniform composition distribution and low defect densities. In addition, our cesium-incorporated perovskites demonstrate much enhanced stability compared with FAPbI3, as a result of suppressed ionic migration due to reduced electron-phonon coupling.

Author(s):  
Linlin Qiu ◽  
Jiacheng Zou ◽  
Wei-Hsiang Chen ◽  
Lika Dong ◽  
Deqiang Mei ◽  
...  

The crystallinity of a perovskite film can play a key role in the photovoltaic performance and long-term stability of perovskite solar cells (PSCs).


2018 ◽  
Vol 11 (10) ◽  
pp. 2985-2992 ◽  
Author(s):  
Ji-Youn Seo ◽  
Hui-Seon Kim ◽  
Seckin Akin ◽  
Marko Stojanovic ◽  
Elfriede Simon ◽  
...  

Zn-TFSI2 is introduced as a powerful p-dopant for spiro-MeOTAD in perovskite solar cells which not only outperforms Li-TFSI but also achieves outstanding long term stability.


Small ◽  
2019 ◽  
Vol 15 (49) ◽  
pp. 1904746 ◽  
Author(s):  
Neha Arora ◽  
M. Ibrahim Dar ◽  
Seckin Akin ◽  
Ryusuke Uchida ◽  
Thomas Baumeler ◽  
...  

2019 ◽  
Vol 7 (17) ◽  
pp. 10246-10255 ◽  
Author(s):  
Sawanta S. Mali ◽  
Jyoti V. Patil ◽  
Chang Kook Hong

A long-term thermally stable, inexpensively produced, inorganic-hole extraction layer (i-HEL) is the best choice for the commercialization of air-thermo-stable, low-cost, highly-efficient perovskite solar cells (PSCs).


Sign in / Sign up

Export Citation Format

Share Document