scholarly journals Geographical Distribution of Amino Acid Mutations in Human SARS-CoV-2 Orf1ab Poly-Proteins Compared to the Equivalent Reference Proteins from China

Author(s):  
Kunchur Guruprasad

<p></p><p>Mutations in orf1ab poly-protein sequences from human SARS-CoV-2 isolates representing six geographical locations were identified by comparing with the equivalent reference sequences from the Wuhan-Hu-1, China isolate, epicentre of the current COVID-19 pandemic disease. The orf1ab poly-proteins of sequence length 7096 amino acid residues representing 10,929 genomes from six geographical locations comprised a total of 27,895 mutations that corresponded to 2,095 distinct mutation sites. The percentage of mutations was significantly high for RdRp (33.47%), nsp2 (20.04%), helicase (15.95%) and nsp3 (12.61%) proteins, compared to rest of the proteins which ranged between (0.14%) for nsp10 to (2.79%) for nsp6 proteins. A total of 2715 mutations were observed for the unique mutation sites identified for each of the six geographical locations. The distribution of the mutations was; Africa (87), Asia (605), Europe (134), North America (1677), Oceania (200) and South America (12). The RdRp protein contained significantly high mutation percentage (>31%) that varied among the different geographical locations. The nsp2 proteins from Asia, North America, Oceania and South America, the nsp3 proteins from Africa and Europe and the helicase proteins from North America showed high mutation percentage next to the RdRp proteins. The P4715L mutation in RdRp, T265I in nsp2 and L3606F in nsp6 were observed in all the geographical locations with the RdRp P4715L mutation being predominant among the orf1ab poly-proteins. In another dataset comprising 158 genomes in which the orf1ab poly-proteins comprised sequences of variable length between 7084-7095 amino acid residues, 88 additional distinct mutations were observed for the six geographical locations that included deletion mutations. The proteins containing deletion mutations were; leader protein, nsp2, nsp3, nsp4, nsp6, RdRp, 3’ -to-5’ exonuclease and endoRNAse.</p> <p> </p> <p>In this work, all the mutations observed in 11,087 orf1ab poly-proteins of human SARS CoV-2 comprising between 7084-7096 amino acid residues with reference to the human SARS-CoV-2 orf1ab poly-protein sequences from Wuhan-Hu-1, China and representing the six geographical locations; Africa, Asia, Europe, North America, Oceania and South America are presented.</p><br><p></p>

2020 ◽  
Author(s):  
Kunchur Guruprasad

<p></p><p>Mutations in orf1ab poly-protein sequences from human SARS-CoV-2 isolates representing six geographical locations were identified by comparing with the equivalent reference sequences from the Wuhan-Hu-1, China isolate, epicentre of the current COVID-19 pandemic disease. The orf1ab poly-proteins of sequence length 7096 amino acid residues representing 10,929 genomes from six geographical locations comprised a total of 27,895 mutations that corresponded to 2,095 distinct mutation sites. The percentage of mutations was significantly high for RdRp (33.47%), nsp2 (20.04%), helicase (15.95%) and nsp3 (12.61%) proteins, compared to rest of the proteins which ranged between (0.14%) for nsp10 to (2.79%) for nsp6 proteins. A total of 2715 mutations were observed for the unique mutation sites identified for each of the six geographical locations. The distribution of the mutations was; Africa (87), Asia (605), Europe (134), North America (1677), Oceania (200) and South America (12). The RdRp protein contained significantly high mutation percentage (>31%) that varied among the different geographical locations. The nsp2 proteins from Asia, North America, Oceania and South America, the nsp3 proteins from Africa and Europe and the helicase proteins from North America showed high mutation percentage next to the RdRp proteins. The P4715L mutation in RdRp, T265I in nsp2 and L3606F in nsp6 were observed in all the geographical locations with the RdRp P4715L mutation being predominant among the orf1ab poly-proteins. In another dataset comprising 158 genomes in which the orf1ab poly-proteins comprised sequences of variable length between 7084-7095 amino acid residues, 88 additional distinct mutations were observed for the six geographical locations that included deletion mutations. The proteins containing deletion mutations were; leader protein, nsp2, nsp3, nsp4, nsp6, RdRp, 3’ -to-5’ exonuclease and endoRNAse.</p> <p> </p> <p>In this work, all the mutations observed in 11,087 orf1ab poly-proteins of human SARS CoV-2 comprising between 7084-7096 amino acid residues with reference to the human SARS-CoV-2 orf1ab poly-protein sequences from Wuhan-Hu-1, China and representing the six geographical locations; Africa, Asia, Europe, North America, Oceania and South America are presented.</p><br><p></p>


2020 ◽  
Vol 17 (1) ◽  
pp. 59-77
Author(s):  
Anand Kumar Nelapati ◽  
JagadeeshBabu PonnanEttiyappan

Background:Hyperuricemia and gout are the conditions, which is a response of accumulation of uric acid in the blood and urine. Uric acid is the product of purine metabolic pathway in humans. Uricase is a therapeutic enzyme that can enzymatically reduces the concentration of uric acid in serum and urine into more a soluble allantoin. Uricases are widely available in several sources like bacteria, fungi, yeast, plants and animals.Objective:The present study is aimed at elucidating the structure and physiochemical properties of uricase by insilico analysis.Methods:A total number of sixty amino acid sequences of uricase belongs to different sources were obtained from NCBI and different analysis like Multiple Sequence Alignment (MSA), homology search, phylogenetic relation, motif search, domain architecture and physiochemical properties including pI, EC, Ai, Ii, and were performed.Results:Multiple sequence alignment of all the selected protein sequences has exhibited distinct difference between bacterial, fungal, plant and animal sources based on the position-specific existence of conserved amino acid residues. The maximum homology of all the selected protein sequences is between 51-388. In singular category, homology is between 16-337 for bacterial uricase, 14-339 for fungal uricase, 12-317 for plants uricase, and 37-361 for animals uricase. The phylogenetic tree constructed based on the amino acid sequences disclosed clusters indicating that uricase is from different source. The physiochemical features revealed that the uricase amino acid residues are in between 300- 338 with a molecular weight as 33-39kDa and theoretical pI ranging from 4.95-8.88. The amino acid composition results showed that valine amino acid has a high average frequency of 8.79 percentage compared to different amino acids in all analyzed species.Conclusion:In the area of bioinformatics field, this work might be informative and a stepping-stone to other researchers to get an idea about the physicochemical features, evolutionary history and structural motifs of uricase that can be widely used in biotechnological and pharmaceutical industries. Therefore, the proposed in silico analysis can be considered for protein engineering work, as well as for gout therapy.


1998 ◽  
Vol 79 (02) ◽  
pp. 306-309 ◽  
Author(s):  
Dougald Monroe ◽  
Julie Oliver ◽  
Darla Liles ◽  
Harold Roberts ◽  
Jen-Yea Chang

SummaryTissue factor pathway inhibitor (TFPI) acts to regulate the initiation of coagulation by first inhibiting factor Xa. The complex of factor Xa/ TFPI then inhibits the factor VIIa/tissue factor complex. The cDNA sequences of TFPI from several different species have been previously reported. A high level of similarity is present among TFPIs at the molecular level (DNA and protein sequences) as well as in biochemical function (inhibition of factor Xa, VIIa/tissue factor). In this report, we used a PCR-based screening method to clone cDNA for full length TFPI from a mouse macrophage cDNA library. Both cDNA and predicted protein sequences show significant homology to the other reported TFPI sequences, especially to that of rat. Mouse TFPI has a signal peptide of 28 amino acid residues followed by the mature protein (in which the signal peptide is removed) which has 278 amino acid residues. Mouse TFPI, like that of other species, consists of three tandem Kunitz type domains. Recombinant mouse TFPI was expressed in the human kidney cell line 293 and purified for functional assays. When using human clotting factors to investigate the inhibition spectrum of mouse TFPI, it was shown that, in addition to human factor Xa, mouse TFPI inhibits human factors VIIa, IXa, as well as factor XIa. Cloning and expression of the mouse TFPI gene will offer useful information and material for coagulation studies performed in a mouse model system.


2018 ◽  
Vol 15 (2) ◽  
pp. 275-294
Author(s):  
Deepsikha Anand ◽  
Jeya Nasim ◽  
Sangeeta Yadav ◽  
Dinesh Yadav

Microbial xylanases represents an industrially important group of enzymes associated with hydrolysis of xylan, a major hemicellulosic component of plant cell walls. A total of 122 protein sequences comprising of 58 fungal, 25 bacterial, 19actinomycetes and 20 yeasts xylanaseswere retrieved from NCBI, GenBank databases. These sequences were in-silico characterized for homology,sequence alignment, phylogenetic tree construction, motif assessment and physio-chemical attributes. The amino acid residues ranged from 188 to 362, molecular weights were in the range of 20.3 to 39.7 kDa and pI ranged from 3.93 to 9.69. The aliphatic index revealed comparatively less thermostability and negative GRAVY indicated that xylanasesarehydrophilicirrespective of the source organisms.Several conserved amino acid residues associated with catalytic domain of the enzyme were observed while different microbial sources also revealed few conserved amino acid residues. The comprehensive phylogenetic tree indicatedsevenorganismsspecific,distinct major clusters,designated as A, B, C, D, E, F and G. The MEME based analysis of 10 motifs indicated predominance of motifs specific to GH11 family and one of the motif designated as motif 3 with sequence GTVTSDGGTYDIYTTTRTNAP was found to be present in most of the xylanases irrespective of the sources.Sequence analysis of microbial xylanases provides an opportunity to develop strategies for molecular cloning and expression of xylanase genes and also foridentifying sites for genetic manipulation for developing novel xylanases with desired features as per industrial needs.


Author(s):  
Tao Zhang ◽  
Qunfu Wu ◽  
Zhigang Zhang

AbstractTo explore potential intermediate host of a novel coronavirus is vital to rapidly control continuous COVID-19 spread. We found genomic and evolutionary evidences of the occurrence of 2019-nCoV-like coronavirus (named as Pangolin-CoV) from dead Malayan Pangolins. Pangolin-CoV is 91.02% and 90.55% identical at the whole genome level to 2019-nCoV and BatCoV RaTG13, respectively. Pangolin-CoV is the lowest common ancestor of 2019-nCoV and RaTG13. The S1 protein of Pangolin-CoV is much more closely related to 2019-nCoV than RaTG13. Five key amino-acid residues involved in the interaction with human ACE2 are completely consistent between Pangolin-CoV and 2019-nCoV but four amino-acid mutations occur in RaTG13. It indicates Pangolin-CoV has similar pathogenic potential to 2019-nCoV, and would be helpful to trace the origin and probable intermediate host of 2019-nCoV.


2020 ◽  
Vol 65 (6) ◽  
pp. 1065-1071
Author(s):  
А.Н. Некрасов ◽  
◽  
Ю.П. Козмин ◽  
С.В. Козырев ◽  
Н.Г. Есипова ◽  
...  

This research investigates 24 647 non-homologous protein sequences. The occurrence profile of peptapeptides was constructed for every sequence and hierarchically organized elements of various sizes were revealed by a special mathematical method in each profile. The correlations between these hierarchical elements were analyzed and it was shown that in a tested set of protein sequences there are 11 levels of protein organization with elements ranging in length from 7 to 56 amino acid residues. It was suggested that the identified levels of organization correspond to elements of a super-secondary structure with different topology.


2020 ◽  
Author(s):  
junhao jiang ◽  
Ping Deng

Abstract Background Very limited drug and diagnostic reagents are currently available to tackle the emergence of SARS-CoV-2. However, recent findings about the structure of the complex about PD of ACE2 and RBD of SARS-CoV-2 spike protein hold great promise for the design of novel vaccines and peptides. To provide some suggestions for the design of peptide-based drug or diagnostic reagents antagonizing SARS-CoV-2, and describe the interactions between the receptor-binding domain of SARS-CoV-2 and PD domain of its receptor, ACE2. Methods Based on the PD-RBD crystal structure, the molecular interaction details of PD-RBD was contrasted. Results Amino acid mutations located in RBM of SARS-CoV result in the formation of new interactions between SARS-CoV-2 and α-helix 1, which can increase the binding affinity of SARS-CoV-2 to ACE2. It is confirmed that the α-helix 1 on ACE2 is the most important domain for binding spike glycoprotein of SARS-CoV-2, which can be used as a leading peptide for drug and diagnostic reagents development. Conclusion Based on the molecular-level characterization analysis between the PD and RBD, severe important amino acid residues (Q24, T27, K31, and H34) on α-helix 1 are proposed to mutate into increasing the binding affinity. Although the information provided in this study is predictive and based on no experimental evidence, it may provide useful suggestions for the experimental scientists to synthesize the proposed peptide and test their binding affinity and blocking capacity, and may be helpful for the understanding of SARS-CoV-2 entry.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Ray Izquierdo-Lara ◽  
Katherine Calderón ◽  
Ana Chumbe ◽  
Ricardo Montesinos ◽  
Ángela Montalván ◽  
...  

We present here the complete genome sequence of fowl aviadenovirus E (FAdV-E) serotype 8b strain FV211-16, isolated from chickens with inclusion body hepatitis in Peru. Genome comparisons with other FAdV-E strains revealed identities of 84.9 to 97.1% and the presence of 9 and 2 unique amino acid mutations in hexon and fiber proteins, respectively.


2005 ◽  
Vol 79 (2) ◽  
pp. 725-731 ◽  
Author(s):  
Duncan J. McGeoch ◽  
Derek Gatherer

ABSTRACT The phylogeny of reptilian herpesviruses (HVs) relative to mammalian and avian HVs was investigated by using available gene sequences and by alignment of encoded amino acid sequences and derivation of trees by maximum-likelihood and Bayesian methods. Phylogenetic loci were obtained for green turtle HV (GTHV) primarily on the basis of DNA polymerase (POL) and DNA binding protein sequences, and for lung-eye-trachea disease-associated HV (LETV) primarily from its glycoprotein B sequence; both have nodes on the branch leading to recognized species in the Alphaherpesvirinae subfamily and should be regarded as new members of that subfamily. A similar but less well defined locus was obtained for an iguanid HV based on a partial POL sequence. On the basis of short POL sequences (around 60 amino acid residues), it appeared likely that GTHV and LETV belong to a private clade and that three HVs of gerrhosaurs (plated lizards) are associated with the iguanid HV. Based on phylogenetic branching patterns for mammalian HV lineages that mirror those of host lineages, we estimated a date for the HV tree's root of around 400 million years ago. Estimated dates for branching events in the development of reptilian, avian, and mammalian Alphaherpesvirinae lineages could plausibly be accounted for in part but not completely by ancient coevolution of these virus lines with reptilian lineages and with the development of birds and mammals from reptilian progenitors.


Sign in / Sign up

Export Citation Format

Share Document