ZnSe Quantum Dots: Determination of Molar Extinction Coefficient for UV to Blue Emitters

Author(s):  
Reyhaneh Toufanian ◽  
Xingjian Zhong ◽  
Joshua Kays ◽  
Alexander Saeboe ◽  
Allison Dennis

<p>The focus on heavy metal-free visible emitters in optoelectronic devices has increased interest in ZnSe semiconductor quantum dots (QDs) over the past decade. Empirical fit equations correlating the lowest energy electron transition to their size and molar extinction coefficients (ε) are often used to determine the concentration of suspensions containing QDs. This is essential to the design and successful synthesis of complex semiconductor nanoparticles including core/shell and dot-in-rod heterostructures as well as consistent device fabrication. While these equations are known and heavily used for CdSe, CdTe, CdS, PbS, etc., they are not well established for ZnSe nanocrystals; the only two reports of ε in the literature differ by over an order of magnitude. In this study, a series of ZnSe QDs with diameters ranging from 2 to 6 nm were characterized with small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and UV-Vis spectroscopy. SAXS-based size analysis enabled practical inclusion of small particles in the evaluation. Elemental analysis with microwave plasma atomic emission spectroscopy (MP-AES) yields a non-stoichiometric Zn:Se ratio consistent with zinc-terminated spherical ZnSe QDs. Using these combined results, molar extinction coefficients for each QD sample were calculated. Empirical fit equations correlating QD size with its lowest energy electron transition (i.e., 1S peak position) and molar extinction coefficients for both 1S peak and high energy wavelengths are reported. These results will enable the consistent and reliable use of ZnSe core particles in complex heterostructures and devices.</p>

2020 ◽  
Author(s):  
Reyhaneh Toufanian ◽  
Xingjian Zhong ◽  
Joshua Kays ◽  
Alexander Saeboe ◽  
Allison Dennis

<p>The focus on heavy metal-free visible emitters in optoelectronic devices has increased interest in ZnSe semiconductor quantum dots (QDs) over the past decade. Empirical fit equations correlating the lowest energy electron transition to their size and molar extinction coefficients (ε) are often used to determine the concentration of suspensions containing QDs. This is essential to the design and successful synthesis of complex semiconductor nanoparticles including core/shell and dot-in-rod heterostructures as well as consistent device fabrication. While these equations are known and heavily used for CdSe, CdTe, CdS, PbS, etc., they are not well established for ZnSe nanocrystals; the only two reports of ε in the literature differ by over an order of magnitude. In this study, a series of ZnSe QDs with diameters ranging from 2 to 6 nm were characterized with small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and UV-Vis spectroscopy. SAXS-based size analysis enabled practical inclusion of small particles in the evaluation. Elemental analysis with microwave plasma atomic emission spectroscopy (MP-AES) yields a non-stoichiometric Zn:Se ratio consistent with zinc-terminated spherical ZnSe QDs. Using these combined results, molar extinction coefficients for each QD sample were calculated. Empirical fit equations correlating QD size with its lowest energy electron transition (i.e., 1S peak position) and molar extinction coefficients for both 1S peak and high energy wavelengths are reported. These results will enable the consistent and reliable use of ZnSe core particles in complex heterostructures and devices.</p>


2020 ◽  
Author(s):  
Reyhaneh Toufanian ◽  
Xingjian Zhong ◽  
Joshua Kays ◽  
Alexander Saeboe ◽  
Allison Dennis

<p>The focus on heavy metal-free visible emitters in optoelectronic devices has increased interest in ZnSe semiconductor quantum dots (QDs) over the past decade. Empirical fit equations correlating the lowest energy electron transition to their size and molar extinction coefficients (ε) are often used to determine the concentration of suspensions containing QDs. This is essential to the design and successful synthesis of complex semiconductor nanoparticles including core/shell and dot-in-rod heterostructures as well as consistent device fabrication. While these equations are known and heavily used for CdSe, CdTe, CdS, PbS, etc., they are not well established for ZnSe nanocrystals; the only two reports of ε in the literature differ by over an order of magnitude. In this study, a series of ZnSe QDs with diameters ranging from 2 to 6 nm were characterized with small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and UV-Vis spectroscopy. SAXS-based size analysis enabled practical inclusion of small particles in the evaluation. Elemental analysis with microwave plasma atomic emission spectroscopy (MP-AES) yields a non-stoichiometric Zn:Se ratio consistent with zinc-terminated spherical ZnSe QDs. Using these combined results, molar extinction coefficients for each QD sample were calculated. Empirical fit equations correlating QD size with its lowest energy electron transition (i.e., 1S peak position) and molar extinction coefficients for both 1S peak and high energy wavelengths are reported. These results will enable the consistent and reliable use of ZnSe core particles in complex heterostructures and devices.</p>


2006 ◽  
Vol 924 ◽  
Author(s):  
Andrea Feltrin ◽  
Alexandre Freundlich

ABSTRACTThe strain distributions and of reflection high energy electron diffraction (RHEED) patterns of uncapped pyramidal shape InAs Stranski-Krastanov quantum dots fabricated on GaAs(001) substrate are investigated theoretically. The three dimensional strain anisotropy is computed with an atomistic elasticity approach, using inter-atomic Keating potentials and the strain energy is minimized using the conjugate gradient numerical method. RHEED images are predicted in the framework of the kinematical theory, by taking into account the refraction of the electron beam at the quantum dot/vacuum interface. Clear correlation between RHEED image features and quantum dot structural properties is established. The study stresses the potential of RHEED for future experimental real-time (during growth) detections and deciphering of strain anisotropies in quantum dots.


RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 38183-38186 ◽  
Author(s):  
Li-Juan Shi ◽  
Chun-Nan Zhu ◽  
He He ◽  
Dong-Liang Zhu ◽  
Zhi-Ling Zhang ◽  
...  

Near-infrared Ag2Se QDs with distinct absorption features ranging between 830–954 nm and fluorescence quantum yields up to 23.4% were controllably synthesized, and the molar extinction coefficients of the Ag2Se QDs were determined.


Sign in / Sign up

Export Citation Format

Share Document