scholarly journals A Soft On/Off Switch Based on the Electrochemically Reversible H-J Interconversion of a Floating Porphyrin Membrane

Author(s):  
Andrés F. Molina-Osorio ◽  
Sho Yamamoto ◽  
Alonso Gamero-Quijano ◽  
Hirohisa Nagatani ◽  
Micheal D. Scanlon

<p>Soft molecular assemblies that respond reversibly to external stimuli are attractive materials as on/off switches, in optoelectronic, memory and sensor technologies. In this article, we present the reversible structural rearrangement of a soft porphyrin membrane under an electrical potential stimulus in the absence of solid-state architectures. The free-floating porphyrin membrane lies at the interface between immiscible aqueous and organic electrolyte solutions and is formed through interfacial self-assembly of zinc(II) meso-tetrakis(4-carboxyphenyl)porphyrins (ZnPor). A potential difference between the two immiscible electrolyte solutions induces the intercalation of bis(triphenylphosphoranylidene)ammonium cations from the organic electrolyte that exchange with protons in the porphyrin membrane. In situ UV/vis absorbance spectroscopy shows that this ionic intercalation and exchange induces a structural interconversion of the individual porphyrin molecules in the membrane from an H- to a J-type molecular configuration. These structural rearrangements are reversible over 30 potential cycles. In situ polarisation-modulation fluorescence spectroscopy further provides clear evidence of structural interconversion of the porphyrin membrane, as intercalation of the organic electrolyte cations significantly affects the latter’s emissive properties. By adjusting the pH of the aqueous phase, additional control of the electrochemically reversible structural interconversion can be achieved, with total suppression at pH 3.<br></p>

2021 ◽  
Author(s):  
Andrés F. Molina-Osorio ◽  
Sho Yamamoto ◽  
Alonso Gamero-Quijano ◽  
Hirohisa Nagatani ◽  
Micheal D. Scanlon

<p>Soft molecular assemblies that respond reversibly to external stimuli are attractive materials as on/off switches, in optoelectronic, memory and sensor technologies. In this article, we present the reversible structural rearrangement of a soft porphyrin membrane under an electrical potential stimulus in the absence of solid-state architectures. The free-floating porphyrin membrane lies at the interface between immiscible aqueous and organic electrolyte solutions and is formed through interfacial self-assembly of zinc(II) meso-tetrakis(4-carboxyphenyl)porphyrins (ZnPor). A potential difference between the two immiscible electrolyte solutions induces the intercalation of bis(triphenylphosphoranylidene)ammonium cations from the organic electrolyte that exchange with protons in the porphyrin membrane. In situ UV/vis absorbance spectroscopy shows that this ionic intercalation and exchange induces a structural interconversion of the individual porphyrin molecules in the membrane from an H- to a J-type molecular configuration. These structural rearrangements are reversible over 30 potential cycles. In situ polarisation-modulation fluorescence spectroscopy further provides clear evidence of structural interconversion of the porphyrin membrane, as intercalation of the organic electrolyte cations significantly affects the latter’s emissive properties. By adjusting the pH of the aqueous phase, additional control of the electrochemically reversible structural interconversion can be achieved, with total suppression at pH 3.<br></p>


2019 ◽  
Author(s):  
Andrés F. Molina-Osorio ◽  
David Cheung ◽  
Colm O'Dwyer ◽  
Andrew A. Stewart ◽  
Manuel Dossot ◽  
...  

One of many evolved functions of biological cell membranes is to induce and regulate self-assembly of photoactive molecules into efficient light harvesting nanomaterials. Synthetic molecular assemblies at soft interfaces exhibit macroscale long-range order and so provide routes to biomimetic analogues that minimise concentration quenching. Here, we report the facile assembly of free-standing layered crystalline films of zinc(II) meso-tetrakis(4-carboxyphenyl)porphyrin nanostructures that exhibit significant photocurrents in situ at an electrified liquid | liquid interface. This methodology does not require acidic conditions, specialised amphiphilic porphyrins, or the use of additives or external stimuli. The assembly process is driven by an interplay between the hydrophobicity gradient at an immiscible aqueous | organic interface and optimised hydrogen bonding in the formed nanostructure. Highly-ordered interfacial nanostructures may provide a new paradigm for realisation of light-harvesting antennae in artificial photosynthetic technologies.


2019 ◽  
Author(s):  
Andrés F. Molina-Osorio ◽  
David Cheung ◽  
Colm O'Dwyer ◽  
Andrew A. Stewart ◽  
Manuel Dossot ◽  
...  

One of many evolved functions of biological cell membranes is to induce and regulate self-assembly of photoactive molecules into efficient light harvesting nanomaterials. Synthetic molecular assemblies at soft interfaces exhibit macroscale long-range order and so provide routes to biomimetic analogues that minimise concentration quenching. Here, we report the facile assembly of free-standing layered crystalline films of zinc(II) meso-tetrakis(4-carboxyphenyl)porphyrin nanostructures that exhibit significant photocurrents in situ at an electrified liquid | liquid interface. This methodology does not require acidic conditions, specialised amphiphilic porphyrins, or the use of additives or external stimuli. The assembly process is driven by an interplay between the hydrophobicity gradient at an immiscible aqueous | organic interface and optimised hydrogen bonding in the formed nanostructure. Highly-ordered interfacial nanostructures may provide a new paradigm for realisation of light-harvesting antennae in artificial photosynthetic technologies.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


2018 ◽  
Author(s):  
Elaine A. Kelly ◽  
Judith E. Houston ◽  
Rachel Evans

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as<i></i>drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium <i>cis-</i>and <i>trans</i>-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, <a>tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) </a>(C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>) using small-angle neutron scattering (SANS). We show that the incorporation of <i>in-situ</i>UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>could switch between wormlike micelles (<i>trans</i>native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked <i>in</i><i>-situ</i>through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 904
Author(s):  
Irin Tanaudommongkon ◽  
Asama Tanaudommongkon ◽  
Xiaowei Dong

Most antiretroviral medications for human immunodeficiency virus treatment and prevention require high levels of patient adherence, such that medications need to be administered daily without missing doses. Here, a long-acting subcutaneous injection of lopinavir (LPV) in combination with ritonavir (RTV) using in situ self-assembly nanoparticles (ISNPs) was developed to potentially overcome adherence barriers. The ISNP approach can improve the pharmacokinetic profiles of the drugs. The ISNPs were characterized in terms of particle size, drug entrapment efficiency, drug loading, in vitro release study, and in vivo pharmacokinetic study. LPV/RTV ISNPs were 167.8 nm in size, with a polydispersity index of less than 0.35. The entrapment efficiency was over 98% for both LPV and RTV, with drug loadings of 25% LPV and 6.3% RTV. A slow release rate of LPV was observed at about 20% on day 5, followed by a sustained release beyond 14 days. RTV released faster than LPV in the first 5 days and slower than LPV thereafter. LPV trough concentration remained above 160 ng/mL and RTV trough concentration was above 50 ng/mL after 6 days with one subcutaneous injection. Overall, the ISNP-based LPV/RTV injection showed sustained release profiles in both in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document