scholarly journals TEMPERATURE DEPENDENCE OF OPTICAL TRANSMISSION OF GERMANIUM SINGLE CRYSTALS

Author(s):  
Александра Ивановна Иванова ◽  
Кристина Александровна Мариничева ◽  
Сергей Андреевич Третьяков ◽  
Алексей Михайлович Иванов ◽  
Сергей Вячеславович Молчанов ◽  
...  

Проведены исследования оптического пропускания в диапазоне длин волн 2 - 14 мкм монокристаллов германия, легированных донорными и акцепторными примесями (удельное сопротивление германия 1 - 3 Ом⋅см), в интервале температур от 86 К до 523 К. Рассчитаны значения коэффициентов ослабления α для исследуемых кристаллов; минимальные значения коэффициентов ослабления (0,0015 - 0,0231 см) в интервале температур от 86 К до 323 К характерны для монокристаллов германия, легированных сурьмой, в диапазоне 2 - 11 мкм. Исследования показали, что низкие значения α и коэффициента пропускания на длине волны 3,39 мкм для кристаллов Ge: Sb и Ge: Bi позволяют применять эти низкоомные кристаллы германия для газовых гелий-неоновых лазеров при температурах от 86 К до 323 К. Исследованы температурные изменения геометрии поверхности кристалла на наноразмерном уровне. Показано, что нагрев кристаллического германия приводит к увеличению диффузного отражения излучения от поверхности. Сделан вывод о возможности использования низкоомных кристаллов германия, легированных сурьмой, в качестве элементов инфракрасной оптики в интервале температур 86 - 373 К. In this work, we investigated optical transmission in the wavelength range of 2-14 μm of low-resistance germanium crystals (1 - 3 Ω⋅cm) doped with donor and acceptor impurities in the temperature range from 86 K to 523 K. The values of the attenuation coefficients for investigated crystals are obtained. Minimum attenuation coefficients α of 0,0015 - 00231 cm in the temperature range from 86 K to 323 K are characteristic for germanium single crystals doped with antimony in the range 2,1-11 μm. Studies have shown that the low values of α and the transmittance at a wavelength of 3,39 pm for Ge: Bi and Ge: Sb crystals make it possible to use these low-resistance germanium crystals for gas helium-neon lasers at temperatures from 86 K to 323 K. The temperature changes in the geometry of the crystal surface are investigated at the nanoscale level. It is shown that heating crystalline germanium leads to an increase in the diffuse reflection of radiation from the surface. The possibility of using the low-resistance germanium crystals doped with antimony as elements of infrared optics in the temperature range 86 - 373 K has been demonstrated.

Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 451 ◽  
Author(s):  
Biao Lu ◽  
Xiaodong Jian ◽  
Xiongwei Lin ◽  
Yingbang Yao ◽  
Tao Tao ◽  
...  

Electrocaloric properties of [110] and [111] oriented 0.73Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single crystals were studied in the temperature range of 293–423 K. The Maxwell relations and the Landau–Ginsburg–Devonshire (LGD) phenomenological theory were employed as the indirect method to calculate the electrocaloric properties, while a high-resolution calorimeter was used to measure the adiabatic temperature change of the electrocaloric effect (ECE) directly. The results indicate that the directly measured temperature changes of ΔT > 2.5 K at room temperature were procured when the applied electric field was reversed from 1 MV/m to −1 MV/m, which are larger than those deduced pursuant to the Maxwell relation, and even larger than those calculated using the LGD theory in the temperature range of 293–~380 K.


2014 ◽  
Vol 95 ◽  
pp. 175-180
Author(s):  
Takuya Agou ◽  
Hiroya Imao

It is necessary to formpinning centers in superconductors to allow the flow of large currents throughthe specimens. To clarify the properties of pinning centers, it is preferableto investigate single crystals. In this study, heat treatment was used to dopevarious oxides into Bi2Sr2CaCu2Ox(Bi-2212) single crystals prepared by self-flux methods and the criticalcurrent (Ic) was measured. The oxides used in this study were Al2O3and the rare earth oxides Er2O3and Nd2O3. At 77K, Nd2O3and Er2O3 are magnetic, whereas Al2O3is nonmagnetic. The Ic of the samples were measured as a current per width of 1cm (Ics). The resulting Ics of the Bi-2212 single crystal was 2.8A/cm and thatof the Al2O3 doped Bi-2212 sample was 4.5A/cm. Comparedwith these samples, doping the other rare earth oxides gave Ics values inexcess 10A/cm. The results indicated that the doping oxides were effective inoperating as pinning centers in the samples. We assumed the current path in asingle crystal, and calculated the Ics by superconducting current simulation.The results indicated that the oxides permeated from a crystal surface in aporous shape. The oxides increase the current which flow in the Cu-O2planes that are parallel to the a-b plane.


2007 ◽  
Vol 22 (8) ◽  
pp. 2116-2124 ◽  
Author(s):  
Li Feng ◽  
Haiyan Guo ◽  
Zuo-Guang Ye

Single crystals of the perovskite solid solution (1 − x)Pb(Fe2/3W1/3)O3–xPbTiO3, with x = 0, 0.07, 0.27, and 0.75, have been synthesized by the high-temperature solution growth using PbO as flux and characterized by x-ray diffraction and dielectric and magnetic measurements. The crystal structure at room temperature changes from a pseudocubic to a tetragonal phase with the PbTiO3 (PT) content increasing to x ⩾ 0.27. As the amount of PT increases, the relaxor ferroelectric behavior of Pb(Fe2/3W1/3)O3 (PFW) is transformed toward a normal ferroelectric state with sharp and nondispersive peaks of dielectric permittivity at TC. Two types of magnetic orderings are observed on the temperature dependence of the magnetization in the crystals with x ⩽ 0.27. This behavior is explained based on the relationships among the magnetic ordering, perovskite structure, composition, and relaxor ferroelectric properties. Furthermore, the macroscopic magnetization of the system was measured under the application of a magnetic field, which demonstrates different magnetic behavior associated with the weakly ferromagnetic, antiferromagnetic, and paramagnetic ordering in the temperature range of 2 to 390 K. Interestingly, the low-temperature ferromagnetism is enhanced by the addition of ferroelectric PT up to x = 0.27.


1999 ◽  
Vol 13 (29n31) ◽  
pp. 3758-3763 ◽  
Author(s):  
AUGUST YURGENS ◽  
DAG WINKLER ◽  
TORD CLAESON ◽  
SEONG-JU HWANG ◽  
JIN-HO CHOY

The c-axis tunneling properties of both pristine Bi2212 and its HgBr 2 intercalate have been measured in the temperature range 4.2-250 K. Lithographically patterned 7-10 unit-cell heigh mesa structures on the surfaces of these single crystals were investigated. Clear SIS-like tunneling curves for current applied in the c-axis direction have been observed. The dynamic conductance d I/ d V(V) shows both sharp peaks corresponding to a superconducting gap edge and a dip feature beyond the gap, followed by a wide maximum, which persists up to a room temperature. Shape of the temperature dependence of the c-axis resistance does not change after the intercalation suggesting that a coupling between CuO 2-bilayers has little effect on the pseudogap.


Author(s):  
H. B. Gasimov ◽  
R. M. Rzayev

Cu2Te single crystal was grown by the Bridgman method. X-ray diffraction (XRD) study of Cu2Te single crystals in the temperature range of 293–893 K was performed and possible phase transitions in the mentioned range of temperature have been investigated. (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals also were grown with [Formula: see text], 0.05, 0.10 concentrations and structural properties of the obtained single crystals were investigated by the XRD method in the temperature range 293–893 K. Lattice parameters and possible phase transitions in the mention temperature range were determined for (Cu2Te)[Formula: see text](ZnTe)[Formula: see text] single crystals for [Formula: see text], 0.05, 0.10 concentrations.


2018 ◽  
Vol 18 (11) ◽  
pp. 6777-6785 ◽  
Author(s):  
Tetsuya Yamada ◽  
Nobuyuki Zettsu ◽  
Hye-min Kim ◽  
Yuta Hagano ◽  
Nobuyuki Handa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document