scholarly journals Modified Bernoulli vacation batch arrival and retrial clients in a single server queuing model with server utilization

2021 ◽  
pp. 46-51
Author(s):  
V. Rajam ◽  
S. Uma

Queuing Theory provides the system of applications in many sectors in life cycle. Queuing Structure and basic components determination is computed in queuing model simulation process. Distributions in Queuing Model can be extracted in quantitative analysis approach. Differences in Queuing Model Queue discipline, Single and Multiple service station with finite and infinite population is described in Quantitative analysis process. Basic expansions of probability density function, Expected waiting time in queue, Expected length of Queue, Expected size of system, probability of server being busy, and probability of system being empty conditions can be evaluated in this quantitative analysis approach. Probability of waiting ‘t’ minutes or more in queue and Expected number of customer served per busy period, Expected waiting time in System are also computed during the Analysis method. Single channel model with infinite population is used as most common case of queuing problems which involves the single channel or single server waiting line. Single Server model with finite population in test statistics provides the Relationships used in various applications like Expected time a customer spends in the system, Expected waiting time of a customer in the queue, Probability that there are n customers in the system objective case, Expected number of customers in the system


2018 ◽  
Vol 127-128 ◽  
pp. 1-20 ◽  
Author(s):  
Chesoong Kim ◽  
Sergei Dudin ◽  
Alexander Dudin ◽  
Konstantin Samouylov

Author(s):  
Arivudainambi D ◽  
Gowsalya Mahalingam

This chapter is concerned with the analysis of a single server retrial queue with two types of service, Bernoulli vacation and feedback. The server provides two types of service i.e., type 1 service with probability??1 and type 2 service with probability ??2. We assume that the arriving customer who finds the server busy upon arrival leaves the service area and are queued in the orbit in accordance with an FCFS discipline and repeats its request for service after some random time. After completion of type 1 or type 2 service the unsatisfied customer can feedback and joins the tail of the retrial queue with probability f or else may depart from the system with probability 1–f. Further the server takes vacation under Bernoulli schedule mechanism, i.e., after each service completion the server takes a vacation with probability q or with probability p waits to serve the next customer. For this queueing model, the steady state distributions of the server state and the number of customers in the orbit are obtained using supplementary variable technique. Finally the average number of customers in the system and average number of customers in the orbit are also obtained.


2019 ◽  
Vol 53 (5) ◽  
pp. 1861-1876 ◽  
Author(s):  
Sapana Sharma ◽  
Rakesh Kumar ◽  
Sherif Ibrahim Ammar

In many practical queuing situations reneging and balking can only occur if the number of customers in the system is greater than a certain threshold value. Therefore, in this paper we study a single server Markovian queuing model having customers’ impatience (balking and reneging) with threshold, and retention of reneging customers. The transient analysis of the model is performed by using probability generating function technique. The expressions for the mean and variance of the number of customers in the system are obtained and a numerical example is also provided. Further the steady-state solution of the model is obtained. Finally, some important queuing models are derived as the special cases of this model.


Sign in / Sign up

Export Citation Format

Share Document