scholarly journals The changes in the chemical and microbiological characteristics of lamtoro (Leucaena leucocephala) tempe from Pacitan with usar inoculum during continued fermentation

Food Research ◽  
2021 ◽  
Vol 5 (S2) ◽  
pp. 45-50
Author(s):  
A.M. Sari ◽  
D.A. Artini ◽  
D. Ishartani ◽  
A. Nursiwi ◽  
M.Z. Zaman

In addition to soybean, Leucaena leucocephala is one of the tempe raw materials usually used in Indonesia. These tempe is only made by peoples in a few areas in the southern part of Java such as Wonogiri, Gunungkidul and Pacitan. For some purposes, such as cooking ingredients, tempe is deliberately fermented longer than usual to obtain a savory taste. In a previous study, we had studied leucaena tempe or people known as lamtoro tempe that process in Wonogiri and reported that there had been a change in characteristic during fermentation until over-fermented tempe. Therefore, in this research, we analyzed the change in the chemical and microbiological characteristic of lamtoro tempe from Pacitan during continued fermentation. This research showed that during the fermentation process, mold, yeast, and lactic acid bacteria (LAB) persisted for up to 126 hrs of fermentation time. The growth of yeast and mold tend to decrease while LAB continued to increase until it reached 11 log CFU/mL. In addition, the moisture content, ash content, soluble protein levels, pH and titrated acid increased during continued fermentation time. Glutamic acid and aspartic acid were the highest amino acids by weight percentage. Both amino acids have an important role in the sensory characteristics of lamtoro tempe.

Food Research ◽  
2021 ◽  
Vol 5 (S2) ◽  
pp. 78-83
Author(s):  
D. Ishartani ◽  
D. Sistiani ◽  
A.M. Sari ◽  
A. Nursiwi ◽  
M.Z. Zaman

Lamtoro tempeh is a traditional Indonesian fermented food made from lamtoro (Leucaena leucocephala). In Pacitan, it is usually fermented using usar (a traditional tempeh inoculum made from senggani leaves). The fermentation process takes 42 hrs and during this period, there are changes in the chemical and microbiological characteristics of the lamtoro seeds. To study these changes, samples were collected and tested for chemical characteristics (water content, ash content, dissolved protein, pH, and total acid titration) and microbiological characteristics (the number of fungi, yeast, and lactic acid bacteria) every 6 hrs during the 42 hrs fermentation. During fermentation, the water content increased significantly in the initial 6 hrs of fermentation and then tended to stabilize until the 42-hour. The ash content increased, while the dissolved protein content increased from the 0-hour to the 36-hour of fermentation but dropped at the 42-hour. The pH level of the lamtoro tempeh decreased from 0-hour until 30-hour and then increased until the end of the fermentation period. However, the level of total acid titration increased during the lamtoro tempeh fermentation. The growth of fungi, yeast and lactic acid bacteria initially declined but then gradually increased until the end of fermentation (42-hour). The fermentation time was found to affect both the number of microbes and the chemical characteristics of the lamtoro tempeh from the Pacitan area.


2017 ◽  
Vol 4 (2) ◽  
pp. 166
Author(s):  
Nabila Ukhty ◽  
Anhar Rozi ◽  
Andiani Sartiwi

Terasi is a product of fermentation-based on rebon or fish with the addition of salt. Fermentation with salt led to an overhaul of proteins into amino acids eg glutamic acid as a producer of distinctive taste shrimp paste. Raw material, salt concentration and fermentation time is an important factor in the process of making paste. This study aimed to analyze the effect of different formulations of rebon (Acetes sp) and HTS generated against chemical quality paste. Raw materials used in this study is rebon (Acetes sp.) and fish HTS. Treatment used is the difference rebon formulation composition of fish and meat. Research methods using the experimental method with descriptive design field. Parameters tested include moisture content, ash content, fat content, protein, carbohydrates, pH, and glutamic acid. Based on the results obtained paste with the best formulation of the paste P1 treatment with a water content of 15.48%, 39.52% ash content, the fat content of 7.23%, 42.50% protein content, carbohydrate content of 4.73%, pH 5 , 67%, and 22.56% glutamic acid.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Prabin Koirala ◽  
Ndegwa Henry Maina ◽  
Hanna Nihtilä ◽  
Kati Katina ◽  
Rossana Coda

Abstract Background Lactic acid bacteria can synthesize dextran and oligosaccharides with different functionality, depending on the strain and fermentation conditions. As natural structure-forming agent, dextran has proven useful as food additive, improving the properties of several raw materials with poor technological quality, such as cereal by-products, fiber-and protein-rich matrices, enabling their use in food applications. In this study, we assessed dextran biosynthesis in situ during fermentation of brewers´ spent grain (BSG), the main by-product of beer brewing industry, with Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. The starters performance and the primary metabolites formed during 24 h of fermentation with and without 4% sucrose (w/w) were followed. Results The starters showed similar growth and acidification kinetics, but different sugar utilization, especially in presence of sucrose. Viscosity increase in fermented BSG containing sucrose occurred first after 10 h, and it kept increasing until 24 h concomitantly with dextran formation. Dextran content after 24 h was approximately 1% on the total weight of the BSG. Oligosaccharides with different degree of polymerization were formed together with dextran from 10 to 24 h. Three dextransucrase genes were identified in L. pseudomesenteroides DSM20193, one of which was significantly upregulated and remained active throughout the fermentation time. One dextransucrase gene was identified in W. confusa A16 also showing a typical induction profile, with highest upregulation at 10 h. Conclusions Selected lactic acid bacteria starters produced significant amount of dextran in brewers’ spent grain while forming oligosaccharides with different degree of polymerization. Putative dextransucrase genes identified in the starters showed a typical induction profile. Formation of dextran and oligosaccharides in BSG during lactic acid bacteria fermentation can be tailored to achieve specific technological properties of this raw material, contributing to its reintegration into the food chain.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ahmad Shobib

Cow manure can be used for making organic fertilizer because it contains nutrients such as Nitrogen (N), Phosphorus (P), and Potassium (K). Rice straw has a high C-Organic content. Adding straw compost will increase soil organic matter content. The study aims to determine the fermentation process that occurs so as to produce organic fertilize, know the effect of fermentation time and the effect of the composition of raw materials for cow manure and rice straw on the process of making organic fertilizer to the content of organic fertilizer according to SNI 7603 : 2018. The method use by aerobic fermentation is by mixing cow manure and rice straw and M-Dec bioactivators by comparison 3 : 1, 2 : 2,1 : 3 and fermentation time 7, 14, 21, 28 days. The parameters tested are C-organic, Nitrogen (N), C/N ratio, Phosphorus (P), and Potassium (K). The best quality organic fertilizer in the treatment of cow manure : rice straw with a ratio of 2 : 2 on the 28th day fermentation process namely C-organic content 34,63 %, C/N ratio is 25, macro nutrient content N+P2O5+K2O of 3,14 % that has met SNI 7763 : 2018. Keyword: M-Dec bioactivator, aerobic fermentation, cow manure, rice straw, C/N ratio


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Azwar Azwar ◽  
Hisbullah Hisbullah ◽  
Ahmad Irgi ◽  
Wari Julyadi ◽  
Adisalamun Adisalamun ◽  
...  

Yoghurt is a pro-biotic beverage produced from the fermentation process of milk, namely from vegetable milk (soy milk) or animal milk (goat's milk and cow's milk). During the fermentation process, the chemical reactions that occur will turn milk into yogurt with the help of lactic acid bacteria. In the health sector, yogurt plays a role in increasing the body's immunity, digestive tract health and can prevent osteoporosis. In general, yogurt circulating in the community still has low nutritional content, so a more in-depth study needs to be done. The goal of this research is to examine the quality of yogurt by manipulating certain variables and adding other components to increase the yogurt's quality. Streptococcus thermophilus and Lactobacillus bulgaricus were used as starter as much as 12.5 mL each (10% of 500 mL of cream milk). The fixed variables in this study were the volume of goat's milk 500 ml, cream concentration 6%, pasteurization temperature 85°C, pasteurization time 15 minutes and fermentation temperature 45°C, while the independent variables were varying the length of the fermentation process for 3, 4, 5, 6, 7, 8 and 9 hours. From this study, it was concluded that yogurt with optimum results was obtained at a fermentation time of 6 hours, the pH value was 3.8, lactic acid content was 1.305%, protein content was 5.54%, fat content was 4.98%, and moisture content was 84.10%.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2827
Author(s):  
Februadi Bastian ◽  
Olly Sanny Hutabarat ◽  
Andi Dirpan ◽  
Firzan Nainu ◽  
Harapan Harapan ◽  
...  

Coffee is consumed not just for its flavor, but also for its health advantages. The quality of coffee beverages is affected by a number of elements and a series of processes, including: the environment, cultivation, post-harvest, fermentation, storage, roasting, and brewing to produce a cup of coffee. The chemical components of coffee beans alter throughout this procedure. The purpose of this article is to present information about changes in chemical components and bioactive compounds in coffee during preharvest and postharvest. The selection of the appropriate cherry maturity level is the first step in the coffee manufacturing process. The coffee cherry has specific flavor-precursor components and other chemical components that become raw materials in the fermentation process. During the fermentation process, there are not many changes in the phenolic or other bioactive components of coffee. Metabolites fermented by microbes diffuse into the seeds, which improves their quality. A germination process occurs during wet processing, which increases the quantity of amino acids, while the dry process induces an increase in non-protein amino acid γ-aminobutyric acid (GABA). In the roasting process, there is a change in the aroma precursors from the phenolic compounds, especially chlorogenic acid, amino acids, and sugars found in coffee beans, to produce a distinctive coffee taste.


2020 ◽  
Vol 50 (4) ◽  
pp. 749-762
Author(s):  
Vladimir Kondratenko ◽  
Natalia Posokina ◽  
Ol’ga Lyalina ◽  
Anastasiay Kolokolova ◽  
Sergey Glazkov

Introduction. Fermentative processing of plant raw materials is traditionally carried out using native (epiphytic) microflora, which is located on the surface and represented by lactic acid microorganisms. During this process, the carbohydrates in the raw material are metabolized into lactic acid. This process does not always result in optimal product quality as the raw material often lacks carbohydrates, the optimal conditions for the development of the target microflora are hard to achieve, the microflora might be inhibited by contaminants, etc. Lactic acid microbial consortia can act as a good alternative to spontaneous fermentation of cabbage as this method creates good conditions for the microbial synergistic interaction. Such fermentation process can be controlled by adjusting the carbohydrate composition of the substrate. The research objective was to develop an analytical approach to determine the minimum required degree of change in the native carbohydrate composition of substrate that would ensure the synergy of lactic acid microorganisms. Study objects and methods. The fermentation process was performed using white cabbage of Slava variety and such strains of lactic acid microorganisms as Lactobacillus casei VCM 536, Lactobacillus plantarum VCM B-578, and Lactobacillus brevis VCM B-1309, as well as their paired consortia. The raw material was subjected to grinding, and the epiphytic microflora was removed to create optimal conditions for the development of the lactic acid microflora. Results and discussion. The study made it possible to define the dynamics of carbohydrate fermentation in white cabbage by various strains of lactic bacteria and their paired consortia during processing. Mathematical models helped to describe the dynamics of glucose and fructose fermentation. The experiment also demonstrated the changes that occurred in the interaction within the paired consortia during fermentation. The paper introduces a new approach to determining the minimum required degree of change in the native carbohydrate composition required to ensure synergy of lactic acid microorganisms in paired consortia. Conclusion. The research defined the necessary amounts of carbohydrate needed to shift the integral factor of mutual influence towards sustainable synergy for three paired consortia. Consortium L. brevis + L. plantarum + 3.65 g/100 g of fructose proved to be the optimal variant for industrial production of sauerkraut from white cabbage of Slava variety. The developed approach can improve the existing industrial technologies of fermentation and create new ones.


2020 ◽  
Vol 9 (6) ◽  
pp. e14962446
Author(s):  
Shana Kimi Farias Yamaguchi ◽  
Carolina Krebs de Souza ◽  
Sávio Leandro Bertoli ◽  
Lisiane Fernandes de Carvalho

This study aimed to evaluate the physical-chemical characteristics and the viability of lactic acid bacteria during the fermentation process of the yogurt and after the freeze-dried process, in addition to testing three thickener formulations for the rehydration of the yogurt powder. During the fermentation process, the production of lactic acid and the growth of lactic acid bacteria were accompanied.  Before and after freeze-dried process, yogurt was analyzed for pH, titratable acidity, carbohydrates, proteins, lipids and viable lactic acid bacteria. After lyophilization, three thickener formulations were tested to evaluate the rehydration of powdered yogurt. At the end of the fermentation process, it was verified that the lactic acid bacteria grew to reach 7.8.107 UFC.g-1 and the acidity obtained was 9.27 g.L-1.  The viable lactic acid bacteria count of freeze-dried and non-freeze-dried yogurt was 5.6.107 CFU.g-1 and 7.8.107 CFU.g-1, respectively. Non-freeze-dried and freeze-dried yogurts showed a content of 20.8% and 21.0% carbohydrates, 4.0% and 3.6% protein and 3.7% and 2.7% lipids, respectively. The combination of thickeners that provided viscosity similar to commercial yogurts was the guar gum, pectin and maltodextrin mix. Thus, it was possible to verify that the freeze-drying process maintains the physical-chemical characteristics and viability of lactic acid bacteria. In addition, the developed yogurt presented easy reconstitution at the time of consumption.


Author(s):  
NE Posokina ◽  
AI Zakharova

Introduction: Fermentation is a biotechnological process of preserving the biological potential of raw materials and transforming them in order to impart new organoleptic properties and to increase nutritional value of the product allowing diversification of daily meals; thus, in some countries fermented products make up a significant part of the human diet. Despite the fact that fermented products are very useful for humans, the fermentation process itself remained rather complicated for reproduction during a long time. Currently, starter cultures are used in industrial production of fermented food products enabling the production of foodstuffs with a guaranteed range of consumer properties. Such species of lactic acid bacteria as Carnobacterium, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus, and Weissella play the main role in production of fermented food and drinks while L. mesenteroides plays the primary role in starting fermentation of many types of plant materials including cabbage, beet, turnip, cauliflower, green beans, chopped green tomatoes, cucumbers, olives, etc. Objective: To control and manage the industrial fermentation process, it is important to determine the main processes occurring at different stages and the types of lactic acid microorganisms responsible for initiation, continuation and completion of the process. Results: This review shows that, despite the variety of fermentable vegetables, L. mesenteroides species of lactic acid bacteria are of particular importance at the primary heteroenzymatic stage since during this very period the processed raw materials form conditions for inhibiting pathogenic and facultative pathogenic microflora and create optimal environment for subsequent development of targeted microorganisms determining the quality of finished products. Conclusions: When developing food technology, L. mesenteroides species of lactic acid bacteria must be an indispensable component of industrial starter cultures for obtaining final products of consistently high quality.6


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3049 ◽  
Author(s):  
Hyelyeon Hwang ◽  
Jong-Hee Lee

Kimchi fermentation depends on diverse lactic acid bacteria, which convert raw materials into numerous metabolites that contribute to the taste of food. Amino acids and saccharides are important primary metabolites. Arginine is nearly exhausted during kimchi fermentation, whereas the concentrations of other amino acids are reported not to increase or decrease dramatically. These phenomena could imply that arginine is an important nutritional component among the amino acids during kimchi fermentation. In this study, we investigated the arginine-catabolism pathway of seven lactic acid bacteria isolated from kimchi and evaluated the products of arginine catabolism (citrulline and ornithine) associated with the bacteria. The arginine content dramatically decreased in cultures of Lactobacillus brevis and Weissella confusa from 300 μg/mL of arginine to 0.14 ± 0.19 and 1.3 ± 0.01 μg/mL, respectively, after 6 h of cultivation. Citrulline and ornithine production by L. brevis and W. confusa showed a pattern that was consistent with arginine catabolism. Interestingly, Pediococcus pentosaceus, Lactobacillus plantarum, Leuconostoc mesenteroides, and Leuconostoc lactis did not show increased citrulline levels after arginine was added. The ornithine contents were higher in all bacteria except for L. lactis after adding arginine to the culture. These results were consistent with the absence of the arginine deiminase gene among the lactic acid bacteria. Arginine consumption and ornithine production were monitored and compared with lactic acid bacteria by metagenomics analysis, which showed that the increment of ornithine production correlated positively with lactic acid bacteria growth.


Sign in / Sign up

Export Citation Format

Share Document