scholarly journals The development of a passive, wireless sensor system

2021 ◽  
Author(s):  
◽  
Natsuki Hasegawa

<p>This thesis describes the development of a prototype passive, wireless sensor system based on magnetoelastic sensor technology. The application of the sensor system is aimed at the measurement of humidity levels in sealed containers and structures, in particular the detection of moisture ingress in building structures. The system uses magnetoelastic sensor elements as is commonly used in commercial electronic article surveillance (EAS) systems for the prevention of shoplifting. Magnetoelastic Metglas® 2826MB material is evaluated and it is shown that the application of a magnetic bias field of the appropriate magnitude is critical for optimum sensor performance. The sensors can be activated for the detection of water vapour by the application of an appropriate chemical interface layer. A polyvinyl alcohol (PVA) layer was found to produce a resonant frequency response of approximately 50 Hz/RH(%). The design and construction of a portable electronic sensor reader is described and it is shown that the reader can successfully interrogate the sensor inside sealed spaces at practical distances. The construction of a practical humidity sensor using a PVA coating and the humidity response of the sensor system is then calibrated using a commercial humidity sensor. The system showed good response over the 0-100 % relative humidity range, with some non-linearity observed at high humidity levels. The completed sensor system was then evaluated for practical applications including measurements inside a sealed food container as well as inside a wall cavity. The results indicated that the constructed system was capable of measuring humidity with reasonable accuracy in such applications.</p>

2021 ◽  
Author(s):  
◽  
Natsuki Hasegawa

<p>This thesis describes the development of a prototype passive, wireless sensor system based on magnetoelastic sensor technology. The application of the sensor system is aimed at the measurement of humidity levels in sealed containers and structures, in particular the detection of moisture ingress in building structures. The system uses magnetoelastic sensor elements as is commonly used in commercial electronic article surveillance (EAS) systems for the prevention of shoplifting. Magnetoelastic Metglas® 2826MB material is evaluated and it is shown that the application of a magnetic bias field of the appropriate magnitude is critical for optimum sensor performance. The sensors can be activated for the detection of water vapour by the application of an appropriate chemical interface layer. A polyvinyl alcohol (PVA) layer was found to produce a resonant frequency response of approximately 50 Hz/RH(%). The design and construction of a portable electronic sensor reader is described and it is shown that the reader can successfully interrogate the sensor inside sealed spaces at practical distances. The construction of a practical humidity sensor using a PVA coating and the humidity response of the sensor system is then calibrated using a commercial humidity sensor. The system showed good response over the 0-100 % relative humidity range, with some non-linearity observed at high humidity levels. The completed sensor system was then evaluated for practical applications including measurements inside a sealed food container as well as inside a wall cavity. The results indicated that the constructed system was capable of measuring humidity with reasonable accuracy in such applications.</p>


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3976
Author(s):  
Sun Jin Kim ◽  
Myeong-Lok Seol ◽  
Byun-Young Chung ◽  
Dae-Sic Jang ◽  
Jonghwan Kim ◽  
...  

Self-powered wireless sensor systems have emerged as an important topic for condition monitoring in nuclear power plants. However, commercial wireless sensor systems still cannot be fully self-sustainable due to the high power consumption caused by excessive signal processing in a mini-electronic computing system. In this sense, it is essential not only to integrate the sensor system with energy-harvesting devices but also to develop simple data processing methods for low power schemes. In this paper, we report a patch-type vibration visualization (PVV) sensor system based on the triboelectric effect and a visualization technique for self-sustainable operation. The PVV sensor system composed of a polyethylene terephthalate (PET)/Al/LCD screen directly converts the triboelectric signal into an informative black pattern on the LCD screen without excessive signal processing, enabling extremely low power operation. In addition, a proposed image processing method reconverts the black patterns to frequency and acceleration values through a remote-control camera. With these simple signal-to-pattern conversion and pattern-to-data reconversion techniques, a vibration visualization sensor network has successfully been demonstrated.


2021 ◽  
Vol 6 (1) ◽  
pp. 2
Author(s):  
Liliana Anchidin-Norocel ◽  
Sonia Amariei ◽  
Gheorghe Gutt

The aim of this paper is the development of a sensor for the quantification of nickel ions in food raw materials and foods. It is believed that about 15% of the human population suffers from nickel allergy. In addition to digestive manifestations, food intolerance to nickel may also have systemic manifestations, such as diffuse dermatitis, diffuse itching, fever, rhinitis, headache, altered general condition. Therefore, it is necessary to control this content of nickel ions for the health of the human population by developing a new method that offers the advantages of a fast, not expensive, in situ, and accurate analysis. For this purpose, bismuth oxide-screen-printed electrodes (SPEs) and graphene-modified SPEs were used with a very small amount of dimethylglyoxime and amino acid L-histidine that were deposited. A potentiostat that displays the response in the form of a cyclic voltammogram was used to study the electrochemical properties of nickel standard solution with different concentrations. The results were compared and the most sensitive sensor proved to be bismuth oxide-SPEs with dimethylglyoxime (Bi2O3/C-dmgH2) with a linear response over a wide range (0.1–10 ppm) of nickel concentrations. Furthermore, the sensor shows excellent selectivity in the presence of common interfering species. The Bi2O3/C-dmgH2 sensor showed good viability for nickel analysis in food samples (cocoa, spinach, cabbage, and red wine) and demonstrated significant advancement in sensor technology for practical applications.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 219
Author(s):  
Phuoc Duc Nguyen ◽  
Lok-won Kim

People nowadays are entering an era of rapid evolution due to the generation of massive amounts of data. Such information is produced with an enormous contribution from the use of billions of sensing devices equipped with in situ signal processing and communication capabilities which form wireless sensor networks (WSNs). As the number of small devices connected to the Internet is higher than 50 billion, the Internet of Things (IoT) devices focus on sensing accuracy, communication efficiency, and low power consumption because IoT device deployment is mainly for correct information acquisition, remote node accessing, and longer-term operation with lower battery changing requirements. Thus, recently, there have been rich activities for original research in these domains. Various sensors used by processing devices can be heterogeneous or homogeneous. Since the devices are primarily expected to operate independently in an autonomous manner, the abilities of connection, communication, and ambient energy scavenging play significant roles, especially in a large-scale deployment. This paper classifies wireless sensor nodes into two major categories based the types of the sensor array (heterogeneous/homogeneous). It also emphasizes on the utilization of ad hoc networking and energy harvesting mechanisms as a fundamental cornerstone to building a self-governing, sustainable, and perpetually-operated sensor system. We review systems representative of each category and depict trends in system development.


Author(s):  
Rhys-Sheffer Birthwright ◽  
Achille Messac ◽  
Timothy Harren-Lewis ◽  
Sirisha Rangavajhala

In this paper, we explore the design of thermoelectric (TE) windows for applications in building structures. Thermoelectric windows are equipped with TE units in the window frame to provide a heat absorption power, given a direct current input. We explore the design performance of the TE window to compensate for its own heat gains. While existing energy efficient windows have made advances towards reducing the heat transfer through them, they still depend on the building’s heating, ventilation and air-conditioning (HVAC) system to compensate for their heat gains. Our research explores the design of a window that can actively compensate for the passive heat flow through the window panes, and to do so with a better coefficient of performance (COP) than conventional HVAC systems. We also optimize the TE window design, and present results of the potential performance for practical applications in the building structure. For the geographic locations considered (Hawaii and Miami), the results are promising. Interestingly, the proposed TE window design actively compensates for the conduction heat gains with a COP greater than three, while that of conventional systems is typically less than three.


2012 ◽  
Vol 59 (11) ◽  
pp. 3124-3130 ◽  
Author(s):  
N. J. Cleven ◽  
Jutta A. Muntjes ◽  
H. Fassbender ◽  
U. Urban ◽  
M. Gortz ◽  
...  

Sensors ◽  
2008 ◽  
Vol 8 (4) ◽  
pp. 2662-2672 ◽  
Author(s):  
Sung Lee ◽  
Ji Lee ◽  
Shaestagir Chowdhury

Sign in / Sign up

Export Citation Format

Share Document