scholarly journals The impact of sustainability on fire safety

2021 ◽  
Author(s):  
◽  
Mohammad Musa Al-Janabi

<p>There is a growing demand for building green buildings that are perceived to have benefits environmentally through promoting recycling, energy efficiency and efficient use of resources. The green movement has also led to innovative technologies that are focused on reducing cost. However, the fire safety industry has concerns with the use of certain technologies that create passages for smoke and fire to spread such as passive ventilation or materials that can burn severely and release large amount of toxins. The benefit of this research is to determine which features are high risk and are commonly used. The aim of this research is to investigate whether sustainable or green features have an influence on fire safety in commercial buildings and determine which feature or features would have the most significant implications for building safety in regards to tenability. A detailed investigation was done on passive ventilation such as double skin facade and the thesis also briefly discusses other green features and their implications. There were two methods used to collect data. The first was a qualitative study done through sending out surveys to fire engineers to rate and rank the most significant features that have negative implications for fire safety in reference to the New Zealand Building Code Fire Safety Section criteria and objectives. Then, a one hour interview was carried out to determine the reason behind the engineers’ choice and their perceptions. The results from the surveys and the interviews were that double skin facade and atrium were ranked the most significant. The surveys established double skin facade has the highest ranking in terms of the worst feature, and the fire engineers reinforced that double skin facade needs to be studied as there is not enough research that have gone into this feature. While atrium issues are known and mitigation measures are well developed. A subsequent analysis for only double skin facade is conducted using Fire Dynamics Simulator (FDS) because little literature is found in regards to fire safety and double skin facade. FDS was used to simulate 14 small models and 2 large models for the best and worst scenarios of DSF. Each of the 14 models, one to three parameters are changed as part of the sensitivity study to determine which parameter have the most and least effect on fire safety in term of Carbon Monoxide (CO) and visibility. The issues the engineers raised and the mitigation measures were modelled, because the engineers had stated their opinions not facts. The output results from FDS illustrated that it is essential that the system shuts off in a fire event to prevent smoke spread to upper floors, which is the same mitigation measure that were emphasised at the interviews.</p>

2021 ◽  
Author(s):  
◽  
Mohammad Musa Al-Janabi

<p>There is a growing demand for building green buildings that are perceived to have benefits environmentally through promoting recycling, energy efficiency and efficient use of resources. The green movement has also led to innovative technologies that are focused on reducing cost. However, the fire safety industry has concerns with the use of certain technologies that create passages for smoke and fire to spread such as passive ventilation or materials that can burn severely and release large amount of toxins. The benefit of this research is to determine which features are high risk and are commonly used. The aim of this research is to investigate whether sustainable or green features have an influence on fire safety in commercial buildings and determine which feature or features would have the most significant implications for building safety in regards to tenability. A detailed investigation was done on passive ventilation such as double skin facade and the thesis also briefly discusses other green features and their implications. There were two methods used to collect data. The first was a qualitative study done through sending out surveys to fire engineers to rate and rank the most significant features that have negative implications for fire safety in reference to the New Zealand Building Code Fire Safety Section criteria and objectives. Then, a one hour interview was carried out to determine the reason behind the engineers’ choice and their perceptions. The results from the surveys and the interviews were that double skin facade and atrium were ranked the most significant. The surveys established double skin facade has the highest ranking in terms of the worst feature, and the fire engineers reinforced that double skin facade needs to be studied as there is not enough research that have gone into this feature. While atrium issues are known and mitigation measures are well developed. A subsequent analysis for only double skin facade is conducted using Fire Dynamics Simulator (FDS) because little literature is found in regards to fire safety and double skin facade. FDS was used to simulate 14 small models and 2 large models for the best and worst scenarios of DSF. Each of the 14 models, one to three parameters are changed as part of the sensitivity study to determine which parameter have the most and least effect on fire safety in term of Carbon Monoxide (CO) and visibility. The issues the engineers raised and the mitigation measures were modelled, because the engineers had stated their opinions not facts. The output results from FDS illustrated that it is essential that the system shuts off in a fire event to prevent smoke spread to upper floors, which is the same mitigation measure that were emphasised at the interviews.</p>


2021 ◽  
Author(s):  
Philip McKeen

This research investigates and attempts to quantify the hazards associated with fire in metrostations. The use of numerical simulations for the analysis of fire safety within metro-stations allows for the prediction and analysis of hazards within the built environment. Such approaches form the growing basis of performance based design (PBD), which can optimize design solutions. The simulations utilize Fire Dynamics Simulator (FDS), a Computational Fluid Dynamics (CFD) model and Pathfinder, an evacuation modeling software. The safety of underground metro-stations is analyzed through the simulation of smoke spread and egress modelling. CFD models of TTC’s Union Station and TransLink’s Yaletown Station are developed to allow for simulations of smoke spread scenarios. These models are evaluated in regards to the preservation of tenability and influence on the Available Safe Egress Time (ASET). The egress of metro-stations is modelled and analyzed to determine the Required Safe Egress Time (RSET).


2020 ◽  
pp. 47-54
Author(s):  
Ирек Равильевич Хасанов ◽  
Софья Федоровна Лобова ◽  
Наталья Вячеславовна Петрова ◽  
Татьяна Дмитриевна Теплякова

Проанализирована нормативная база, регламентирующая проведение расчетов по оценке параметров срабатывания автоматической установки пожарной сигнализации (АУПС), а также компьютерных программ моделирования динамики пожара и математических моделей, описывающих срабатывание пожарных извещателей. Сформулированы и структурированы вопросы нормативного характера, для решения которых необходимо применение компьютерного моделирования динамики пожара с учетом работы АУПС. Предложен алгоритм компьютерного моделирования пожара в ходе проведения пожарно-технической экспертизы с учетом возможных расчетных ошибок и получения неоднозначных результатов. It is often necessary to assess the parameters of fire development taking into account the influence of fire protection systems by making the regulatory fire-technical expertise. It may also be necessary to carry out an expert examination of the technical solutions adopted at the site for their compliance with fire safety requirements. These practical studies, in particular, are necessary to analyse the consequences of fire safety violations and establish causal links between violations of requirements and the consequences of fire, both past and theoretically possible. A modern way to estimate fire parameters is by field modeling. Field modeling of fire dynamics can be used to answer questions in two expert situations: after fire and before fire (in particular, within the framework of supervisory measures). When making fire-technical expertise on the fire occurred, the expert needs to restore the pre-fire situation and model the real fire dynamics taking into account the established fire information contained in the case file. In a situation before a fire, the expert needs to model a potentially possible fire under the most unfavourable conditions. In accordance with fire safety requirements, each object of protection must have a fire safety system aimed at preventing fire, ensuring the safety of people and property in case of fire. Compliance of design values and characteristics of the building or structure with safety requirements shall be justified by calculations or tests performed according to certified technique. On the basis of the analysis of the regulatory framework and the formulated groups of regulatory questions there have been developed the procedure of the expert‘s actions and the algorithm for simulating fire dynamics when answering questions related to automatic fire alarm. The impact of input data on the possibility of forming categorical or probabilistic outputs was evaluated. The proposed detailed algorithm of field simulation of fire dynamics during the regulatory fire-technical examination is drawn up taking into account possible calculated errors and obtaining ambiguous results.


2021 ◽  
Author(s):  
Philip McKeen

This research investigates and attempts to quantify the hazards associated with fire in metrostations. The use of numerical simulations for the analysis of fire safety within metro-stations allows for the prediction and analysis of hazards within the built environment. Such approaches form the growing basis of performance based design (PBD), which can optimize design solutions. The simulations utilize Fire Dynamics Simulator (FDS), a Computational Fluid Dynamics (CFD) model and Pathfinder, an evacuation modeling software. The safety of underground metro-stations is analyzed through the simulation of smoke spread and egress modelling. CFD models of TTC’s Union Station and TransLink’s Yaletown Station are developed to allow for simulations of smoke spread scenarios. These models are evaluated in regards to the preservation of tenability and influence on the Available Safe Egress Time (ASET). The egress of metro-stations is modelled and analyzed to determine the Required Safe Egress Time (RSET).


2011 ◽  
Vol 17 (3) ◽  
pp. 371-392 ◽  
Author(s):  
Cheuk Lun Chow

Double-skin façade (DSF) is an environmental friendly architectural feature. However, fire hazard is a concern. A scenario of having a flashover room fire adjacent to the façade was identified. Heat and mass would be trapped in the façade cavity. This paper examines air flow driven out of a flashover room fire to the cavity of a DSF by Computational Fluid Dynamics. The software Fire Dynamics Simulator developed at the Building and Fire Research laboratory, National Institute of Standards and Technology, USA was selected as the simulation tool. Three DSF features labeled as DSF1, DSF2 and DSF3 were considered. Detailed simulations were carried out to understand the fire-induced aerodynamics in a 5-level model DSF1 with a fire room at the third level. Hot gas spreading out to the façade cavity was simulated under two heat release rates of 1 MW and 5 MW. Air cavity depths of 0.5 m, 1 m, 1.5 m and 2 m were considered. Three stages of flame spreading out to a DSF with a wide air cavity depth were identified. Results suggested that wider air cavity depths would be more dangerous, with higher risk of the upper interior glass pane's breaking. To study spreading of heat and mass up the façade cavity as vertical channel flow, two taller DSF façade features DSF2 and DSF3 with differing air cavity depths were simulated. Both features were of height 24 m but of differing fire room height. Vertical temperature profiles with and without the DSF feature were compared. Santrauka Dvigubas fasadas yra ekologiškas architektūrinis sprendimas. Tačiau dvigubas fasadas yra problemiškas gaisrinės saugos požiūriu. Nagrinėjamas scenarijus, kai greta dvigubo fasado esančioje patalpoje įvyksta gaisro pliūpsnis. Dvigubo fasado ertmėje gali būti uždaryti karštis ir masė. Taikomi skaitmeninės skysčių dinamikos metodai nustatyti, kaip iš patalpos, kurįoje įvyksta gaisro pliūpsnis, oras ir degimo produktai išstumiami ī dvigubo fasado ertmę. Modeliuoti naudojama kompiuterinė programa, parengta JAV Nacionaliniame standartų ir technologijos institute. Nagrinėjami trys dvigubų fasadų sprendimai. Atliekamas detalus pirmojo sprendimo fasado modeliavimas siekiant suprasti gaisro lemiamą aerodinamiką penkių aukštų fasade, kai gaisras kyla trečiame aukšte. Modeliuojamas karštu dujų sklidimas iš fasado ertmės viršaus teigiant, kad gaisro išskiriama Siluma yra 1 MW ir 5 MW. Ertmės plotis imamas lygiu 0,5 m, 1,5 m ir 2 m. Nustatomi trys liepsnos sklidimo iš dvigubo fasado etapai. Gauti rezultatai leidžia daryti išvadą, kad platesni fasadai yra pavojingesni, nes didina viršutinių stiklo diskų dužimo tikimybę. Aukštesni antro ir trečio sprendimo fasadai naudoti tirti, kaip karštis ir masė juda vertikalia fasado ertme. Skyrėsi šių fasadų ertmės plotis. Abu fasadai buvo 24 m aukščio, tačiau skyrėsi gaisro patalpos aukštis. Buvo palygintas vertikalusis temperatūros pasiskirstymas dvigubo fasado ertmėje.


2020 ◽  
Author(s):  
Lukman Olagoke ◽  
Ahmet E. Topcu

BACKGROUND COVID-19 represents a serious threat to both national health and economic systems. To curb this pandemic, the World Health Organization (WHO) issued a series of COVID-19 public safety guidelines. Different countries around the world initiated different measures in line with the WHO guidelines to mitigate and investigate the spread of COVID-19 in their territories. OBJECTIVE The aim of this paper is to quantitatively evaluate the effectiveness of these control measures using a data-centric approach. METHODS We begin with a simple text analysis of coronavirus-related articles and show that reports on similar outbreaks in the past strongly proposed similar control measures. This reaffirms the fact that these control measures are in order. Subsequently, we propose a simple performance statistic that quantifies general performance and performance under the different measures that were initiated. A density based clustering of based on performance statistic was carried out to group countries based on performance. RESULTS The performance statistic helps evaluate quantitatively the impact of COVID-19 control measures. Countries tend show variability in performance under different control measures. The performance statistic has negative correlation with cases of death which is a useful characteristics for COVID-19 control measure performance analysis. A web-based time-line visualization that enables comparison of performances and cases across continents and subregions is presented. CONCLUSIONS The performance metric is relevant for the analysis of the impact of COVID-19 control measures. This can help caregivers and policymakers identify effective control measures and reduce cases of death due to COVID-19. The interactive web visualizer provides easily digested and quick feedback to augment decision-making processes in the COVID-19 response measures evaluation. CLINICALTRIAL Not Applicable


BMJ Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. e041599 ◽  
Author(s):  
Mary McCauley ◽  
Joanna Raven ◽  
Nynke van den Broek

ObjectiveTo assess the experience and impact of medical volunteers who facilitated training workshops for healthcare providers in maternal and newborn emergency care in 13 countries.SettingsBangladesh, Ghana, India, Kenya, Malawi, Namibia, Nigeria, Pakistan, Sierra Leone, South Africa, Tanzania, UK and Zimbabwe.ParticipantsMedical volunteers from the UK (n=162) and from low-income and middle-income countries (LMIC) (n=138).Outcome measuresExpectations, experience, views, personal and professional impact of the experience of volunteering on medical volunteers based in the UK and in LMIC.ResultsUK-based medical volunteers (n=38) were interviewed using focus group discussions (n=12) and key informant interviews (n=26). 262 volunteers (UK-based n=124 (47.3%), and LMIC-based n=138 (52.7%)) responded to the online survey (62% response rate), covering 506 volunteering episodes. UK-based medical volunteers were motivated by altruism, and perceived volunteering as a valuable opportunity to develop their skills in leadership, teaching and communication, skills reported to be transferable to their home workplace. Medical volunteers based in the UK and in LMIC (n=244) reported increased confidence (98%, n=239); improved teamwork (95%, n=232); strengthened leadership skills (90%, n=220); and reported that volunteering had a positive impact for the host country (96%, n=234) and healthcare providers trained (99%, n=241); formed sustainable partnerships (97%, n=237); promoted multidisciplinary team working (98%, n=239); and was a good use of resources (98%, n=239). Medical volunteers based in LMIC reported higher satisfaction scores than those from the UK with regards to impact on personal and professional development.ConclusionHealthcare providers from the UK and LMIC are highly motivated to volunteer to increase local healthcare providers’ knowledge and skills in low-resource settings. Further research is necessary to understand the experiences of local partners and communities regarding how the impact of international medical volunteering can be mutually beneficial and sustainable with measurable outcomes.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 463
Author(s):  
Gopinathan R. Abhijith ◽  
Leonid Kadinski ◽  
Avi Ostfeld

The formation of bacterial regrowth and disinfection by-products is ubiquitous in chlorinated water distribution systems (WDSs) operated with organic loads. A generic, easy-to-use mechanistic model describing the fundamental processes governing the interrelationship between chlorine, total organic carbon (TOC), and bacteria to analyze the spatiotemporal water quality variations in WDSs was developed using EPANET-MSX. The representation of multispecies reactions was simplified to minimize the interdependent model parameters. The physicochemical/biological processes that cannot be experimentally determined were neglected. The effects of source water characteristics and water residence time on controlling bacterial regrowth and Trihalomethane (THM) formation in two well-tested systems under chlorinated and non-chlorinated conditions were analyzed by applying the model. The results established that a 100% increase in the free chlorine concentration and a 50% reduction in the TOC at the source effectuated a 5.87 log scale decrement in the bacteriological activity at the expense of a 60% increase in THM formation. The sensitivity study showed the impact of the operating conditions and the network characteristics in determining parameter sensitivities to model outputs. The maximum specific growth rate constant for bulk phase bacteria was found to be the most sensitive parameter to the predicted bacterial regrowth.


Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Wattana Chanthakhot ◽  
Kasin Ransikarbum

Emergency events in the industrial sector have been increasingly reported during the past decade. However, studies that focus on emergency evacuation to improve industrial safety are still scarce. Existing evacuation-related studies also lack a perspective of fire assembly point’s analysis. In this research, location of assembly points is analyzed using the multi-criteria decision analysis (MCDA) technique based on the integrated information entropy weight (IEW) and techniques for order preference by similarity to ideal solution (TOPSIS) to support the fire evacuation plan. Next, we propose a novel simulation model that integrates fire dynamics simulation coupled with agent-based evacuation simulation to evaluate the impact of smoke and visibility from fire on evacuee behavior. Factors related to agent and building characteristics are examined for fire perception of evacuees, evacuees with physical disabilities, escape door width, fire location, and occupancy density. Then, the proposed model is applied to a case study of a home appliance factory in Chachoengsao, Thailand. Finally, results for the total evacuation time and the number of remaining occupants are statistically examined to suggest proper evacuation planning.


Sign in / Sign up

Export Citation Format

Share Document