scholarly journals Designed Deposition - Freeform 3D Printing for Digitally Crafted Artefacts

2021 ◽  
Author(s):  
◽  
Isabella Molloy

<p>Through the exploitation of new additive manufacturing (AM) processes, this research seeks to reinvent the designer as an informed mediator between the digitally defined and the physically expressed.  Current 3D printing techniques generally construct an object layer by layer, building vertically in the z-axis. Recently developed, ‘freeform 3D printing’ is an AM method which builds through the deposition of material that solidifies upon extrusion. The result is free-standing material forms with diminished need for support material.  Building in this spatial manner means that AM is no longer reliant on layer based techniques that are built from ground-up. Instead, motions can move simultaneously in the x, y and z axes. This increased freedom of motion allows the designer to disregard the requisite that solid forms need to be delineated prior to considering material deposition. Considering this in relationship to the design of artefacts, specific approaches that consider both form and material deposition concurrently allow the authorship of the method of making to be reclaimed.  Bespoke computational processes work to encode material deposition with qualities that are tactile, visual and expressive of its making method. Considerations to structural, performative and aesthetic implications are assimilated from the onset rather than post-rationalised. Material deposition is crafted to become three-dimensionally informed and considerate of the integral nature of its making method and its output, exposing new design opportunities.  Among other things, the research-through-design process suggests how parametric modelling could be used for mass-customisation and suggests a possible path for AM beyond prototyping, towards the manufacturing of bespoke products through an industrial design perspective.  Through iterative abstract and application based experiments, Designed Deposition pursues an increasingly integrated process between the user, the designer, the digital and the physical, towards the creation of digitally crafted artefacts.</p>

2021 ◽  
Author(s):  
◽  
Isabella Molloy

<p>Through the exploitation of new additive manufacturing (AM) processes, this research seeks to reinvent the designer as an informed mediator between the digitally defined and the physically expressed.  Current 3D printing techniques generally construct an object layer by layer, building vertically in the z-axis. Recently developed, ‘freeform 3D printing’ is an AM method which builds through the deposition of material that solidifies upon extrusion. The result is free-standing material forms with diminished need for support material.  Building in this spatial manner means that AM is no longer reliant on layer based techniques that are built from ground-up. Instead, motions can move simultaneously in the x, y and z axes. This increased freedom of motion allows the designer to disregard the requisite that solid forms need to be delineated prior to considering material deposition. Considering this in relationship to the design of artefacts, specific approaches that consider both form and material deposition concurrently allow the authorship of the method of making to be reclaimed.  Bespoke computational processes work to encode material deposition with qualities that are tactile, visual and expressive of its making method. Considerations to structural, performative and aesthetic implications are assimilated from the onset rather than post-rationalised. Material deposition is crafted to become three-dimensionally informed and considerate of the integral nature of its making method and its output, exposing new design opportunities.  Among other things, the research-through-design process suggests how parametric modelling could be used for mass-customisation and suggests a possible path for AM beyond prototyping, towards the manufacturing of bespoke products through an industrial design perspective.  Through iterative abstract and application based experiments, Designed Deposition pursues an increasingly integrated process between the user, the designer, the digital and the physical, towards the creation of digitally crafted artefacts.</p>


Author(s):  
Rajit Ranjan ◽  
Rutuja Samant ◽  
Sam Anand

Additive manufacturing (AM) processes are used to fabricate complex geometries using a layer-by-layer material deposition technique. These processes are recognized for creating complex shapes which are difficult to manufacture otherwise and enable designers to be more creative with their designs. However, as AM is still in its developing stages, relevant literature with respect to design guidelines for AM is not readily available. This paper proposes a novel design methodology which can assist designers in creating parts that are friendly to additive manufacturing. The research includes formulation of design guidelines by studying the relationship between input part geometry and AM process parameters. Two cases are considered for application of the developed design guidelines. The first case presents a feature graph-based design improvement method in which a producibility index (PI) concept is introduced to compare AM friendly designs. This method is useful for performing manufacturing validation of pre-existing designs and modifying it for better manufacturability through AM processes. The second approach presents a topology optimization-based design methodology which can help designers in creating entirely new lightweight designs which can be manufactured using AM processes with ease. Application of both these methods is presented in the form of case studies depicting design evolution for increasing manufacturability and associated producibility index of the part.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amy E. Alexander ◽  
Nicole Wake ◽  
Leonid Chepelev ◽  
Philipp Brantner ◽  
Justin Ryan ◽  
...  

AbstractFirst patented in 1986, three-dimensional (3D) printing, also known as additive manufacturing or rapid prototyping, now encompasses a variety of distinct technology types where material is deposited, joined, or solidified layer by layer to create a physical object from a digital file. As 3D printing technologies continue to evolve, and as more manuscripts describing these technologies are published in the medical literature, it is imperative that standardized terminology for 3D printing is utilized. The purpose of this manuscript is to provide recommendations for standardized lexicons for 3D printing technologies described in the medical literature. For all 3D printing methods, standard general ISO/ASTM terms for 3D printing should be utilized. Additional, non-standard terms should be included to facilitate communication and reproducibility when the ISO/ASTM terms are insufficient in describing expository details. By aligning to these guidelines, the use of uniform terms for 3D printing and the associated technologies will lead to improved clarity and reproducibility of published work which will ultimately increase the impact of publications, facilitate quality improvement, and promote the dissemination and adoption of 3D printing in the medical community.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 866
Author(s):  
A. R. Damanpack ◽  
André Sousa ◽  
M. Bodaghi

This paper shows how fused decomposition modeling (FDM), as a three-dimensional (3D) printing technology, can engineer lightweight porous foams with controllable density. The tactic is based on the 3D printing of Poly Lactic Acid filaments with a chemical blowing agent, as well as experiments to explore how FDM parameters can control material density. Foam porosity is investigated in terms of fabrication parameters such as printing temperature and flow rate, which affect the size of bubbles produced during the layer-by-layer fabrication process. It is experimentally shown that printing temperature and flow rate have significant effects on the bubbles’ size, micro-scale material connections, stiffness and strength. An analytical equation is introduced to accurately simulate the experimental results on flow rate, density, and mechanical properties in terms of printing temperature. Due to the absence of a similar concept, mathematical model and results in the specialized literature, this paper is likely to advance the state-of-the-art lightweight foams with controllable porosity and density fabricated by FDM 3D printing technology.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chien-Ho Ko

Purpose Additive manufacturing of concrete (AMoC) is an emerging technology for constructing buildings. However, due to the nature of the concrete property and constructing buildings in layers, constraints and limitations are encountered while applying AMoC in architecture. This paper aims to analyze the constraints and limitations that may be encountered while using AMoC in architecture. Design/methodology/approach A descriptive research approach is used to conduct this study. First, basic notions of AMoC are introduced. Then, challenges of AMoC, including hardware, material property, control and design, are addressed. Finally, strategies that may be used to overcome the challenges are discussed. Findings Factors influencing the success of AMoC include hardware, material, control methods, manufacturing process and design. Considering these issues in the early design phase is crucial to achieving a successful computer-aided design (CAD)/computer-aided manufacturing (CAM) integration to bring CAD and CAM benefits into the architecture industry. Originality/value In three-dimensional (3D) printing, objects are constructed layer by layer. Printing results are thus affected by the additive method (such as toolpath) and material properties (such as tensile strength and slump). Although previous studies attempt to improve AMoC, most of them focus on the manufacturing process. However, a successful application of AMoC in architecture needs to consider the possible constraints and limitations of concrete 3D printing. So far, research on the potential challenges of applying AMoC in architecture from a building lifecycle perspective is still limited. The study results of this study could be used to improve design and construction while applying AMoC in architecture.


2021 ◽  
Author(s):  
◽  
Matthew O'Hagan

<p>The current linear use of plastic products follows a take, make and waste process. Commonly used by large scale industries, including the commercial fishing industry, this process results in approximately 8 million tonnes of plastic entering the ocean every year. While the fishing industry supplies livelihoods, a valuable food source and financial capital to millions of people worldwide, it’s also a significant contributor to the ocean plastics crisis. Without effective recycling schemes, an estimated 640,000 tonnes of plastic fishing gear is abandoned, lost or discarded within the ocean every year. New Zealand is no exception to this problem, as China’s waste import ban, as well as a lack of local recycling infrastructures, has resulted in the country’s commercial fishing gear polluting local coastlines as well as islands in the pacific. With the only other option for the plastic fishing gear being landfill, there is a critical need for circular initiatives that upcycle used plastic fishing gear locally into eco-innovative designs.  This research examines the issue by investigating how used buoys, aquaculture ropes and fishing nets from New Zealand’s fishing company ‘Sanford’ may be upcycled into eco-innovative designs through distributed manufacturing technologies. It introduces the idea of the circular economy, where plastic fishing gear can be reused within a technical cycle and explores how 3D printing could be part of the solution as it provides local initiatives, low material and energy usage and customisation. Overall, the research follows the research through design based on design criteria approach. Where materials, designs and systems are created under the refined research criteria, to ensure the plastic fishing gear samples are upcycled effectively into eco-innovative designs through 3D printing.  The tangible outputs of this research demonstrate how a circular upcycling system that uses distributed manufacturing technologies can create eco-innovative designs and provide a responsible disposal scheme for plastic fishing gear. It provides a new and more sustainable waste management scheme that could be applied to a range of plastic waste streams and diverts materials from entering the environment by continuously reusing them within the economy.</p>


2020 ◽  
Vol 1 (2) ◽  
pp. 81-91
Author(s):  
Frince Marbun ◽  
Richard A.M. Napitupulu

3D printing technology has great potential in today's manufacturing world, one of its uses is in making miniatures or prototypes of a product such as a piston. One of the most famous and inexpensive 3D printing (additive manufacturing) technologies is Fused Deposition Modeling (FDM), the principle FDM works by thermoplastic extrusion through a hot nozzle at melting temperature then the product is made layer by layer. The two most commonly used materials are ABS and PLA so it is very important to know the accuracy of product dimensions. FDM 3D Printing Technology is able to make duplicate products accurately using PLA material. FDM machines work by printing parts that have been designed by computer-aided design (CAD) and then exported in the form of STL or .stl files and uploaded to the slicer program to govern the printing press according to the design. Using Anet A8 brand 3D printing tools that are available to the public, Slicing of general CAD geometry files such as autocad and solidwork is the basis for making this object. This software is very important to facilitate the design process to be printed. Some examples of software that can be downloaded and used free of charge such as Repetier-Host and Cura. by changing the parameters in the slicer software is very influential in the 3D printing manufacturing process.


2021 ◽  
Author(s):  
Stephan Förster ◽  
Jürgen Groll ◽  
Benjamin Reineke ◽  
Stephan Hauschild ◽  
Ilona Paulus ◽  
...  

Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently seemed to be a limitation. Here we introduce a direct coupling of microfluidics and 3D-printing for the microfluidic production of cell-laden microgels with direct in-flow bioprinting into stable scaffolds. The methodology enables the continuous on-chip encapsulation of cells into monodisperse microdroplets with subsequent in-flow cross-linking to produce cell-laden microgels, which after exiting a microtubing are automatically jammed into thin continuous microgel filaments. The integration into a 3D printhead allows direct in-flow printing of the filaments into free-standing three-dimensional scaffolds. The method is demonstrated for different cross-linking methods and cell lines. With this advancement, microfluidics is no longer a bottleneck for biofabrication. <br>


Biomimetics ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 65
Author(s):  
Ansheed A. Raheem ◽  
Pearlin Hameed ◽  
Ruban Whenish ◽  
Renold S. Elsen ◽  
Aswin G ◽  
...  

Biomimetics is an emerging field of science that adapts the working principles from nature to fine-tune the engineering design aspects to mimic biological structure and functions. The application mainly focuses on the development of medical implants for hard and soft tissue replacements. Additive manufacturing or 3D printing is an established processing norm with a superior resolution and control over process parameters than conventional methods and has allowed the incessant amalgamation of biomimetics into material manufacturing, thereby improving the adaptation of biomaterials and implants into the human body. The conventional manufacturing practices had design restrictions that prevented mimicking the natural architecture of human tissues into material manufacturing. However, with additive manufacturing, the material construction happens layer-by-layer over multiple axes simultaneously, thus enabling finer control over material placement, thereby overcoming the design challenge that prevented developing complex human architectures. This review substantiates the dexterity of additive manufacturing in utilizing biomimetics to 3D print ceramic, polymer, and metal implants with excellent resemblance to natural tissue. It also cites some clinical references of experimental and commercial approaches employing biomimetic 3D printing of implants.


Sign in / Sign up

Export Citation Format

Share Document