scholarly journals Seismotectonic of a Locked Subduction Patch: The Southern Hikurangi Margin

2021 ◽  
Author(s):  
◽  
Dominic Evanzia

<p>Subduction zones produce the largest earthquakes on the planet, where rupture along the plate interface can result in the release of stress over large areas, with up to tens of meters of slip extending from below the surface to the trench. The regional stress field is a primary control on the faulting process, ergo understanding the regional stress field leads to a better understanding of the current and future faulting in the area.  Abundant new seismic and continuous Global Positioning System (cGPS) data in the southern North and northern South Island, New Zealand, make it possible to characterize stress and strain parameters throughout the southern Hikurangi subduction zone. Stress orientations calculated within the subducting plate, the overriding Australian plate, and due to gravitational forces reveal that stress throughout the subducting system varies across the southern North Island. Margin parallel motion is being accommodated by shear deformation west of theWairarapa fault, whereas margin perpendicular motion is being accommodated east of theWairarapa fault.  Stress parameters within the double Benioff zone (DBZ) were characterized in term of two bands of seismicity. In the deep region of the DBZ, inversion the upper band of seismicity shows down-dip tension, while the lower band shows compression. Tension in the upper band and compression in the lower band is consistent with bending stresses. In the shallow region of the DBZ, the inversion of both the upper and lower bands seismicity showed tension; this is indicative of slab pull.  Shear-wave splitting of stacked waveforms of local earthquakes recorded on 291 three-component stations showed an average fast azimuth of N-S to NNE-SSW, west of theWairarapa fault. A fast azimuth orientation of N-S to NNE-SSW is sub-parallel to the local major faults. This indicates that the observed anisotropy west of theWairarapa fault is structurally derived. East of the Wairarapa fault, within the Wairarapa Basin, the average fast azimuth orientation isNNW-SSE. Because the fast azimuth orientation showed no dependence on station-earthquake distance, depth, or back azimuth and is perpendicular to major local faults; it has been interpreted as being reflective of the SHmax orientation.  cGPS daily solutions for long-term and inter-slow slip events (inter-SSE) time periods show distinctly differing regions of shear strain rate in the southern North Island and northern South Island. Compression and positive (clockwise) rotation in the southern North and northern South Island was observed using both datasets. Inter-SSE time periods resulted in lower magnitude strain parameters than those calculated during time periods including SSEs. These datasets shows that strain parameters change on time scales of SSEs (< 10 years).</p>

2021 ◽  
Author(s):  
◽  
Dominic Evanzia

<p>Subduction zones produce the largest earthquakes on the planet, where rupture along the plate interface can result in the release of stress over large areas, with up to tens of meters of slip extending from below the surface to the trench. The regional stress field is a primary control on the faulting process, ergo understanding the regional stress field leads to a better understanding of the current and future faulting in the area.  Abundant new seismic and continuous Global Positioning System (cGPS) data in the southern North and northern South Island, New Zealand, make it possible to characterize stress and strain parameters throughout the southern Hikurangi subduction zone. Stress orientations calculated within the subducting plate, the overriding Australian plate, and due to gravitational forces reveal that stress throughout the subducting system varies across the southern North Island. Margin parallel motion is being accommodated by shear deformation west of theWairarapa fault, whereas margin perpendicular motion is being accommodated east of theWairarapa fault.  Stress parameters within the double Benioff zone (DBZ) were characterized in term of two bands of seismicity. In the deep region of the DBZ, inversion the upper band of seismicity shows down-dip tension, while the lower band shows compression. Tension in the upper band and compression in the lower band is consistent with bending stresses. In the shallow region of the DBZ, the inversion of both the upper and lower bands seismicity showed tension; this is indicative of slab pull.  Shear-wave splitting of stacked waveforms of local earthquakes recorded on 291 three-component stations showed an average fast azimuth of N-S to NNE-SSW, west of theWairarapa fault. A fast azimuth orientation of N-S to NNE-SSW is sub-parallel to the local major faults. This indicates that the observed anisotropy west of theWairarapa fault is structurally derived. East of the Wairarapa fault, within the Wairarapa Basin, the average fast azimuth orientation isNNW-SSE. Because the fast azimuth orientation showed no dependence on station-earthquake distance, depth, or back azimuth and is perpendicular to major local faults; it has been interpreted as being reflective of the SHmax orientation.  cGPS daily solutions for long-term and inter-slow slip events (inter-SSE) time periods show distinctly differing regions of shear strain rate in the southern North Island and northern South Island. Compression and positive (clockwise) rotation in the southern North and northern South Island was observed using both datasets. Inter-SSE time periods resulted in lower magnitude strain parameters than those calculated during time periods including SSEs. These datasets shows that strain parameters change on time scales of SSEs (< 10 years).</p>


Author(s):  
Zhonghua Tian ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Peng Huang ◽  
Ji’en Zhang ◽  
...  

The orogenic architecture of the Altaids of Central Asia was created by multiple large-scale slab roll-back and oroclinal bending. However, no regional structural deformation related to roll-back processes has been described. In this paper, we report a structural study of the Beishan orogenic collage in the southernmost Altaids, which is located in the southern wing of the Tuva-Mongol Orocline. Our new field mapping and structural analysis integrated with an electron backscatter diffraction study, paleontology, U-Pb dating, 39Ar-40Ar dating, together with published isotopic ages enables us to construct a detailed deformation-time sequence: During D1 times many thrusts were propagated northwards. In D2 there was ductile sinistral shearing at 336−326 Ma. In D3 times there was top-to-W/WNW ductile thrusting at 303−289 Ma. Two phases of folding were defined as D4 and D5. Three stages of extensional events (E1−E3) separately occurred during D1−D5. Two switches of the regional stress field were identified in the Carboniferous to Early Permian (D1-E1-D2-D3-E2) and Late Permian to Early Triassic (D4-E3-D5). These two switches in the stress field were associated with formation of bimodal volcanic rocks, and an extensional interarc basin with deposition of Permian-Triassic sediments, which can be related to two stages of roll-back of the subduction zone on the Paleo-Asian oceanic margin. We demonstrate for the first time that two key stress field switches were responses to the formation of the Tuva-Mongol Orocline.


Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 123-127 ◽  
Author(s):  
Nevio Zitellini ◽  
César R. Ranero ◽  
M. Filomena Loreto ◽  
Marco Ligi ◽  
Marco Pastore ◽  
...  

Abstract The Tyrrhenian Basin is a region created by Neogene extensional tectonics related to slab rollback of the east-southeast–migrating Apennine subduction system, commonly believed to be actively underthrusting the Calabrian arc. A compilation of &gt;12,000 km of multichannel seismic profiles, much of them recently collected or reprocessed, provided closer scrutiny and the mapping of previously undetected large compressive structures along the Tyrrhenian margin. This new finding suggests that Tyrrhenian Basin extension recently ceased. The ongoing compressional reorganization of the basin indicates a change of the regional stress field in the area, confirming that slab rollback is no longer a driving mechanism for regional kinematics, now dominated by the Africa-Eurasia lithospheric collision


Sign in / Sign up

Export Citation Format

Share Document