scholarly journals Analisis Faktor Kapasitas Pembangkit Listrik Hibrida PLTB dengan PLTD di Pulau Terpencil: Studi Kasus Elat Pulau Serau Maluku

Author(s):  
FRANSISCO DANANG WIJAYA ◽  
I WAYAN ADIYASA ◽  
EKRAR WINATA

ABSTRAKRasio elektrifikasi di Indonesia belum mencapai 100%, penyebabnya antara lain masalah lokasi di daerah terpencil atau kepulauan dan mahalnya biaya operasi PLTD. Salah satu solusi adalah membangkitkan listrik berbasis energi terbarukan setempat. Tahap awal pemanfaatan energi terbarukan perlu dihitung faktor kapasitas (CF). Tujuan penelitian ini menganalisis CF untuk PLTB dengan metode perhitungan analitik berbasis potensi energi angin, spesifikasi teknologi PLTB dan PLTD, profil beban dan energi listrik yang dapat diproduksi untuk pengembangan sistem hibrida dengan mengambil kasus di Elat Pulau Serau Maluku. Hasil perhitungan CF untuk 5 teknologi PLTB yang berbeda dengan variasi ketinggian di Elat telah diverifikasi dengan simulasi menggunakan perangkat lunak HOMER dengan nilai rerata galat -0,030. Semakin tinggi PLTB, nilai CF semakin besar dengan konstanta 0,0030.Kata kunci: elektrifikasi, faktor kapasitas, PLTB, PLTD, sistem hibrida ABSTRACTThe electrification ratio in Indonesia has not reached 100%, the causes include problems with the location in remote areas or islands and the high operating costs of diesel power plant (DPP). One solution is to generate electricity based on local renewable energy. The initial stage of utilizing renewable energy needs to calculate the capacity factor (CF). The purpose of this research is to analyze CF for wind turbine generator (WTG) with analytical calculation methods based on wind energy potential, technology specifications of WTG and DPP, load profiles and electrical energy that can be produced for hybrid system development by taking the case in Elat Serau Island, Maluku. The results of CF calculations for 5 different WTG technologies with altitude variations in Elat have been verified by simulation using HOMER software with a mean error value of -0.030. The higher the WTG, the greater the CF value with a constant of 0.0030.Keywords: electrification, capacity factor, diesel power plant, wind turbine generator, hybrid system

Author(s):  
Hasan Huseyin Yildirim ◽  
Sakir Sakarya

Energy has become one of the most important building blocks of many changes in the world, and it still maintains this quality. The demand for natural resources and energy continues to increase  daily. For this reason, the supply of reliable and sustainable energy has become an important issue that concerns and occupies mankind. Of the renewable energy sources, wind energy is a clean, reliable and inexhaustible source of energy with low operating costs. Turkey is a rich nation in terms of wind energy potential. In this context, the profitability of investments made in utilising domestic and renewable energy potential is important. Investment efficiency is a very important issue before and during the investment period due to the fact that wind energy investments are high cost investments. In this study, a solution will be proposed for the replacement of inefficient wind turbines which have been installed. In the ideal solution of the issue, the remaining lifetime of the wind turbine which is to be replaced and capacity utilization at the new location of the turbine will be used as key input factors. The results showed that it was important for the relocation decision to be made early for the investment to be more profitable. In the event of delayed decisions to relocate the turbine, a high capacity factor is expected in the new location. If a high capacity factor is not achieved, the relocation of the turbine will be meaningless and losses will be incurred for the investor. Also according to the results of the analysis, in the first two years, the turbine operating at a low capacity of 19% and 17% is profitable if it works at 26% capacity until the end of its economic life when change is made in the third year.


Author(s):  
Anggara Trisna Nugraha ◽  
Dadang Priyambodo

The need for electrical energy in Indonesia continues to increase every year. In line with the increase in the electrification ratio to 100% in 2050, the demand for electrical energy is projected to reach 7 times, namely 1,611 TWh. To meet electricity needs, the government has created a 35 GW program, but one of the largest contributors to power generation fuel is coal with a share of 58% or around 50 GW which is estimated to be exhausted within the next 68 years. For this reason, innovations are needed in terms of fulfilling electrical energy by utilizing renewable energy potential, one of which is hydro energy, which is 45,379 MW from a total resource of 75,091 MW. Therefore, from this potential, innovations related to renewable energy have been created, namely the Hybrid Portable Underwater Turbine Hydro and Solar Energy hybrid power plant. This power plant uses an undersea current as a propulsion which is hybridized with solar power to increase the production of electrical energy. This power plant has the advantage that there is an Underwater turbine design that is resistant to underwater flow and a water flow direction to increase the work efficiency of the underwater turbine. From the test results, the portable Underwater turbine hydro produces 950 W in a day. Solar panels produce 65.6 Watts a day. The total hybrid that can be produced is 1.02 kW a day. In its implementation it can supply loads of up to 900 (VA) such as lamps, fans, TV, etc. This hybrid power plant can be a solution to help meet electricity needs in the area around Dusun Dongol, Sidoarjo through alternative electrical energy innovations.


Energy ◽  
2014 ◽  
Vol 73 ◽  
pp. 88-95 ◽  
Author(s):  
Tian-Pau Chang ◽  
Feng-Jiao Liu ◽  
Hong-Hsi Ko ◽  
Shih-Ping Cheng ◽  
Li-Chung Sun ◽  
...  

Most of the electricity generation process in Malaysia using fuel sources especially coal and natural gasses. The country needs to spend higher cost to import this source since it is not a natural resource in Malaysia. In addition, the usage of coal as resources affected the environment. The extinction of this source also needs to be considered since it is not a renewable energy sources. Therefore, a prototype of mini wind turbine generator is proposed in this research in order to study the effectiveness of this type of generator since it is one of the alternatives to generate electricity. It is developed in Archimedes design by using microcontroller. The performance is evaluated by analyzing the blade material, number of blades and the environment influence on the location of wind turbine generator. The results show that the blade made from acrylic with lowest number of blades produced higher voltage and current while the location of the designed prototype at high hill area generate higher value of voltage and current compared to the beach and field area.


Author(s):  
Welly Yandi ◽  
Wahri Sunanda ◽  
Nada Fitsa Alfazumi

The Waste Power Plant is one of the power plants with a new renewable energy concept that utilizes waste as fuel. The processing of waste into electrical energy is carried out in two ways: the thermal conversion process and the biological conversion process to find the potential for waste that can be used as fuel to generate electricity. The analysis is needed, especially for Pangkalpinang, which currently has a lot of unprocessed waste. This research was conducted through calculations using several formulas that have been used in previous studies. From these results, the potential waste in 2015 is 97.25 tons/day and produces energy of 18548.10 MWh/year, and in 2020, it was about 186.57 tons/day and produced energy of 35547.18 MWh/year. The projection calculations are carried out to determine the potential for 2021 to 2030. Waste as much as 182523 tons/day in2021 can produce energy of as much as 34776.11 MWh/year. And in 2030, the amount of waste as much as 218132 tons/day can generate an energy potential of 41560.69 MWh/year.


2014 ◽  
Vol 564 ◽  
pp. 758-763
Author(s):  
N.A. Hamid ◽  
M.F. Suparin ◽  
T. Gokila ◽  
L.S. Ewe

This paper reports on the design cost and scaling model of a small scale superconducting wind turbine generator, where the levelized cost of energy (COE) was calculated. The proposed design of the wind turbine is based on the vertical axis wind turbine (VAWT) type that drives the superconducting generator. VAWT was chosen due to its ability to operate under low wind speed. Wind turbine using superconducting generator was proposed since it is able to enhance magnetic flux within the stator of the generator and consequently improve the performance of the generator. Once the design has been accomplished, all the cost of parts and components must be accounted and contributes to the overall cost of generating electrical energy from the superconducting wind turbine generator. The cost elements include the initial capital cost (ICC), balance of station (BOS), operation and maintenance (O&M), levelized replacement cost (LRC) and annual energy production (AEP). The calculated levelized COE shows that the cost of generating electricity using superconducting wind turbine generator is lower than generating electricity from conventional sources.


2011 ◽  
Vol 20 (1) ◽  
pp. 29-36
Author(s):  
Krzysztof Pytel

Abstract A reliability analysis of wind turbine systems applies to chosen localizations in Poland was inspected. The average availability, capacity factor and energy efficiency of the large wind turbine generator have been analyzed. It is noticed that if a failure rate decreases by modernizing assemblies by removing chosen subassemblies and reconstructing others, an average lifetime of the wind turbine enlarge noticeably. Moreover, it is possible to find, both poor and excellent wind potential on areas classified as not preferable for a wind industry.


Author(s):  
Chaudhari Monali ◽  
Bhaskar A. A

Introduction: Nowadays, Wireless Sensor Network (WSN) plays an important role in various fields. The limited power capability of the sensor nodes in the WSN brings constraints on the performance of the network. Low energy adaptive clustering hierarchy (LEACH) is a promising protocol for WSN that suffers from higher energy consumption. Objective: The primary objective of this study is to give an alternate harvesting resource power to sensor nodes in the LEACH algorithm which can be equally capable of providing the same or some time better results. Method: This study is based on real-time meteorological data. A real-time wind speed data is taken for the starting of a day to the end of the day on an hourly basis from the weather forecast. Now to convert this rotational energy into electrical energy, we used two types of wind turbines. For the proposed methodology, a micro wind turbine generator and 300watt wind turbine are used. Then this converted electrical energy is given to sensor nodes. For the clustering, the wind power operated nodes are given maximum preference to be elected as the cluster heads based on real-time wind meteorological data. We consider 10 wind-powered sensor nodes. As we increase the number of wind-powered sensor nodes in the network the performance is increased in terms of a lifetime but then increases the complexity of the network. Theses wind-powered nodes remain alive in the network. Since the deployment of the sensor nodes is random each simulation runs for 5 times and the average of first node dead, half node dead and last node dead is considered. Results: The experimental results for the micro wind turbine generator are compared based on with and without the MPPT controller. MPPT controller gives the maximum power by using the tip speed ratio control, power signal feedback control, and hill climb search control method. Therefore, the network lifetime should be higher for the MPPT based wind generator. Network lifetime and Energy consumption are compared for a micro wind turbine generator and 300watt wind turbine. Finally, the performance of the proposed system is compared with the modified solar LEACH implemented using real-time meteorological data. Conclusion: This paper has investigated the wind-based LEACH which uses the real-time meteorological data for the selection of the cluster head. Two types of wind generators are considered for the implementation and it is found that the performance of the commercial 300W wind turbine and the micro wind turbine with and without MPPT are almost similar since the data from both wind turbines are given on hourly basis. The performance of the wLEACH is compared with the sLEACH which shows that the network lifespan of the wLEACH is also nearly same compared to the sLEACH. But it is found that wind power generation is cheaper and efficient than solar power generation. So, this proposed wLEACH provides a cost-efficient solution.


Sign in / Sign up

Export Citation Format

Share Document