scholarly journals PREDICTION OF TBM PENETRATION RATE USING SUPPORT VECTOR MACHINE

Geosaberes ◽  
2020 ◽  
Vol 11 ◽  
pp. 467
Author(s):  
Alireza Afradi ◽  
Arash Ebrahimabadi ◽  
Tahereh Hallajian

One of the most important issues in mechanized excavating is to predict the TBM penetration rate. Understanding the factors influencing the rate of penetration is important, which allows for a more accurate estimation of the stopping and excavating times and operating costs. In this study, Input and output parameters including Uniaxial Compressive Strength (UCS), Brazilian Tensile Strength (BTS), Peak Slope Index (PSI), Distance between Planes of Weakness (DPW), Alpha angle and Rate of Penetration (ROP) (m/hr) in the Queens Water Tunnel using support vector machine .Results showed that prediction of penetration rate for Support Vector Machine (SVM) method is R2 = 0.9678 and RMSE = 0.064778, According to the results, Support Vector Machine (SVM) is effective and has high accuracy.

Author(s):  
Sandi Fajar Rodiyansyah ◽  
Edi Winarko

AbstrakSetiap hari server Twitter menerima data tweet dengan jumlah yang sangat besar, dengan demikian, kita dapat melakukan data mining yang digunakan untuk tujuan tertentu. Salah satunya adalah untuk visualisasi kemacetan lalu lintas di sebuah kota.Naive bayes classifier adalah pendekatan yang mengacu pada teorema Bayes, dengan mengkombinasikan pengetahuan sebelumnya dengan pengetahuan baru. Sehingga merupakan salah satu algoritma klasifikasi yang sederhana namun memiliki akurasi tinggi. Untuk itu, dalam penelitian ini akan membuktikan kemampuan naive bayes classifier untuk mengklasifikasikan tweet yang berisi informasi dari kemacetan lalu lintas di Bandung.Dari hasil uji coba, aplikasi menunjukan bahwa nilai akurasi terkecil 78% dihasilkan pada pengujian dengan sampel sebanyak 100 dan menghasilkan nilai akurasi tinggi 91,60% pada pengujian dengan sampel sebanyak 13106. Hasil pengujian dengan perangkat lunak Rapid Miner 5.1 diperoleh nilai akurasi terkecil 72% dengan sampel sebanyak 100 dan nilai akurasi tertinggi 93,58% dengan sampel 13106 untuk metode naive bayesian classification. Sedangkan untuk metode support vector machine diperoleh nilai akurasi terkecil 92%  dengan sampel sebanyak 100 dan nilai akurasi tertinggi 99,11% dengan sampel sebanyak 13106. Kata kunci— Twitter, tweet, klasifikasi, naive bayesian classification, support vector machine  AbstractEvery day the Twitter server receives data tweet with a very large number, thus, we can perform data mining to be used for specific purpose. One of which is for the visualization of traffic jam in a city.Naive bayes classifier is an approach that refers to the bayes theorem, is a combination of prior knowledge with new knowledge. So that is one of the classification algorithm is simple but has a high accuracy. With this, in this research will prove the ability naive bayes classifier to classify the tweet that contains information of traffic jam in Bandung.The testing result, the program shows that the smallest value of the accuracy is 78% on testing by using a sample 100 record and generate high accuracy is 91,60% on the testing by using a sample 13106 record. The testing results with Rapid Miner 5.1 software obtained the smallest value of the accuracy is 72% by using a sample 100 records and the high accuracy is 93.58%  by using a sample 13.106 records for naive bayesian classification. And for the method of support vector machine obtained the smallest value is 92% accuracy by using a sample 100 records and the high accuracy of 99.11% by using a sample 13.106 records. Keywords—Twitter, tweet, classification, naive bayesian classification, support vector machine


Author(s):  
Sandi Fajar Rodiyansyah ◽  
Edi Winarko

AbstrakSetiap hari server Twitter menerima data tweet dengan jumlah yang sangat besar, dengan demikian, kita dapat melakukan data mining yang digunakan untuk tujuan tertentu. Salah satunya adalah untuk visualisasi kemacetan lalu lintas di sebuah kota.Naive bayes classifier adalah pendekatan yang mengacu pada teorema Bayes, dengan mengkombinasikan pengetahuan sebelumnya dengan pengetahuan baru. Sehingga merupakan salah satu algoritma klasifikasi yang sederhana namun memiliki akurasi tinggi. Untuk itu, dalam penelitian ini akan membuktikan kemampuan naive bayes classifier untuk mengklasifikasikan tweet yang berisi informasi dari kemacetan lalu lintas di Bandung.Dari hasil uji coba, aplikasi menunjukan bahwa nilai akurasi terkecil 78% dihasilkan pada pengujian dengan sampel sebanyak 100 dan menghasilkan nilai akurasi tinggi 91,60% pada pengujian dengan sampel sebanyak 13106. Hasil pengujian dengan perangkat lunak Rapid Miner 5.1 diperoleh nilai akurasi terkecil 72% dengan sampel sebanyak 100 dan nilai akurasi tertinggi 93,58% dengan sampel 13106 untuk metode naive bayesian classification. Sedangkan untuk metode support vector machine diperoleh nilai akurasi terkecil 92%  dengan sampel sebanyak 100 dan nilai akurasi tertinggi 99,11% dengan sampel sebanyak 13106. Kata kunci— Twitter, tweet, klasifikasi, naive bayesian classification, support vector machine AbstractEvery day the Twitter server receives data tweet with a very large number, thus, we can perform data mining to be used for specific purpose. One of which is for the visualization of traffic jam in a city.Naive bayes classifier is an approach that refers to the bayes theorem, is a combination of prior knowledge with new knowledge. So that is one of the classification algorithm is simple but has a high accuracy. With this, in this research will prove the ability naive bayes classifier to classify the tweet that contains information of traffic jam in Bandung.The testing result, the program shows that the smallest value of the accuracy is 78% on testing by using a sample 100 record and generate high accuracy is 91,60% on the testing by using a sample 13106 record. The testing results with Rapid Miner 5.1 software obtained the smallest value of the accuracy is 72% by using a sample 100 records and the high accuracy is 93.58%  by using a sample 13.106 records for naive bayesian classification. And for the method of support vector machine obtained the smallest value is 92% accuracy by using a sample 100 records and the high accuracy of 99.11% by using a sample 13.106 records. Keywords—Twitter, tweet, classification, naive bayesian classification, support vector machine


2020 ◽  
Author(s):  
Rianto Rianto ◽  
Achmad Benny Mutiara ◽  
Eri Prasetyo Wibowo ◽  
Paulus Insap Santosa

Abstract Stemming has long been used in data pre-processing in information retrieval, which aims to make affix words into root words. However, there are not many stemming methods for non-formal Indonesian text processing. The existing stemming method has high accuracy for formal Indonesian, but low for non-formal Indonesian. Thus, the stemming method which has high accuracy for non-formal Indonesian classifier model is still an open-ended challenge. This study introduces a new stemming method to solve problems in the non-formal Indonesian text data pre-processing. Furthermore, this study aims to provide comprehensive research on improving the accuracy of text classifier models by strengthening on stemming method. Using the Support Vector Machine algorithm, a text classifier model is developed, and its accuracy is checked. The experimental evaluation was done by testing 550 datasets in Indonesian using two different stemming methods. The results show that using the proposed stemming method, the text classifier model has higher accuracy than the existing methods with a score of 0.85 and 0.73, respectively. In the future, the proposed stemming method can be used to develop the Indonesian text classifier model which can be used for various purposes including text clustering, summarization, detecting hate speech, and other text processing applications.


2021 ◽  
Vol 325 ◽  
pp. 04007
Author(s):  
Lawrence D. Alejandrino ◽  
Jessica Joy D. Jocson ◽  
Micah Romina R. Mirarza ◽  
Ericson D. Dimaunahan ◽  
Ramon G Garcia ◽  
...  

Laguna de Bay, the largest freshwater lake in the Philippines, provides livelihood to the fishermen and serves as a source of potable water to the locals. However, freshwater quality has degraded, whereas one of the main contributors are Cyanobacteria that produce cyanotoxins. Existing studies that uses a similar device are either too expensive or too bulky. The purpose of this study is to estimate the cyanobacteria concentration by using a low-cost 16-channel spectrophotometric device to determine the level of severity efficiently. Using Linear Regression, the dataset is modelled by the algorithm to estimate the number of cyanobacteria present on the water sample, while Support Vector Machine (SVM) algorithm for severity level classifier. This study achieved high accuracy in estimating the cyanobacteria using linear regression and classifying the level of severity by support vector machine.


Seismic tremors everywhere throughout the globe have been a noteworthy reason for decimation and death toll and property. The following context expects to recognize earthquakes at a beginning time utilizing AI. This will help individuals and salvage groups to make their errand simpler. The information in this manner comprises of these seismic acoustic signals and the time of failure. The model is then prepared utilizing the CatBoost model and the utilization of Support Vector Machines. This will help foresee the time at which a Seismic tremor may happen. CatBoost Regression Algorithm gives a Mean Absolute Error of about 1.860. The Cross Validation (CV) Score for the Support Vector Machine (SVM) approach is -2.1651. The datasets metrics are not reliable on any outer parameter in this manner the variety of exactness is constrained, and high accuracy is accomplished.


Sign in / Sign up

Export Citation Format

Share Document