ANTIFUNGAL ACTIVITY OF LEAF EXTRACT OF Cannabis sativa AGAINST Aspergillus flavipes

2020 ◽  
Vol 27 (2) ◽  
pp. 447-453
Author(s):  
Iqra Haider Khan ◽  
Arshad Javaid

Cannabis sativa L. is a medicinally important weed of family Cannabaceae generally grows along road-sides and waste-lends in Punjab, Pakistan. In the present study, antifungal effect of leaf extract of this weed was assessed against Aspergillus flavipes. Methanolic leaf extract of the weed was partitioned into five fractions using organic solvents of variable polarities. A range of concentrations (1.562 to 200 mg mL-1) of each fraction was used in laboratory bioassays. n-Butanol fraction showed the highest antifungal activity followed by chloroform and n-hexane fractions causing 68–82%, 52–82% and 42–82% decrease in biomass of A. flavipes. Ethyl acetate showed a moderate antifungal potential while aqueous fraction showed the least antifungal activity causing 47–76% and 38–73% reduction in fungal biomass, respectively. This study concludes that n-butanol fraction of leaf extract of C. sativa is highly effective in controlling growth of A. flavipes.

2017 ◽  
Vol 35 (0) ◽  
Author(s):  
A. JAVAID ◽  
H. QUDSIA ◽  
A. SHOAIB

ABSTRACT Macrophomina phaseolina is one of the most destructive soil-borne fungal plant pathogens. In the present study, different aerial parts of Senna occidentalis were analyzed for their antifungal activity against M. phaseolina. In initial screening bioassays, 0.5-3.0% concentrations of methanolic extracts of fruit, leaf and stem were tested against M. phaseolina. The methanolic leaf extract showed the greatest activity causing up to 29% suppression in biomass production of M. phaseolina. Fractionation of leaf extract of S. occidentalis was carried out with four organic solvents. Bioassays with a range of concentrations (2.34-150 mg mL-1) of these sub-fractions revealed that the chloroform sub-fraction was the most effective, causing 93-98% reduction in the biomass of M. phaseolina, followed by 59-92% suppression in fungal biomass due to the n-hexane sub-fraction. The ethyl acetate and n-butanol sub-fractions were only effective at higher concentrations. GC-MS analysis of chloroform sub-fraction was performed to identify different compounds. Six compounds were identified in this fraction; 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester was the predominant compound (53.55%) followed by 9,10-dimethyltricyclo[4.2.1.1 (2,5)]decane-9,10-diol (22.68%), cyclohexanol, and 2-(2-hydroxy-2-propyl)-5-methyl (9.87%).


2017 ◽  
Vol 35 (0) ◽  
Author(s):  
A. JAVAID ◽  
L. AFZAL ◽  
A. SHOAIB

ABSTRACT Macrophomina phaseolina, a soil-borne plant pathogen, has the ability to cause diseases in about 500 plant species. Unfortunately, so far no registered fungicide is available against this fungal pathogen. In the present study, different extracts of Sisymbrium irio, a weed of family Brassicaceae, were tested for evaluation of their antifungal activity against M. phaseolina. In screening bioassays, antifungal activity of methanolic extracts of 1% to 6% concentrations of different parts (leaf, stem, root and fruit) of the weed was assessed against the fungal pathogen. Methanolic leaf and root extracts significantly reduced fungal biomass up to 59% and 69% over control, respectively. Methanolic leaf and root extracts were further partitioned using four organic solvents namely n-hexane, chloroform, ethyl acetate and n-butanol in order of increasing polarity. Antifungal activity of different concentrations of these fractions (3.125, 6.25, …, 200 mg mL-1) was assessed against the pathogen. Chloroform and n-hexane fractions of methanolic leaf extract showed highly pronounced activity resulting in 35-75% and 15-87% reduction in fungal biomass over corresponding control treatments, respectively. Likewise, the highest concentration (200 mg mL-1) of chloroform, ethyl acetate and n-butanol fractions of methanolic root extract reduced fungal biomass by 75%, 70% and 87%, respectively. The present study concludes that chloroform and n-butanol fractions of methanolic leaf and root extracts of S. irio, respectively, contain potent antifungal constituents for management of M. phaseolina.


2014 ◽  
Vol 12 ◽  
pp. 29-34
Author(s):  
S. Balamurugan

Medicinal plants play an important role for health care. Medicinal plants have ability to cure both infectious and non infectious diseases. According to an estimate about 25 % of medicines are derived from plants. The objective of the present study was to evaluate the antifungal activity of Feronia elephantum Correa by using Agar well diffusion assay. The fungal strains used in this research work were Aspergillus niger, Penicillium exspansum, Candida albicans and Fusarium oxysporum. The length of inhibition zone was measured in millimetres. The results were referenced against Glucanazole antifungal agent. Methanolic fruit extract showed maximum antifungal activity against most of the strains where as moderate antifungal potential was shown by leaf extract in aqueous extract.


2018 ◽  
Vol 8 (5) ◽  
pp. 268-272
Author(s):  
BK Sahana ◽  
Shahneel Akhilesha ◽  
GS Priyanka ◽  
TR Prashith Kekuda

Objectives: The present study was conducted to investigate the potential of leaf extract of Geophila repens (L.) I.M. Johnst. (Rubiaceae) to exhibit antioxidant and antifungal potential. Methods: Extraction of powdered leaf material was carried out by maceration process using methanol. Antioxidant activity of leaf extract was assessed by DPPH free radical scavenging assay and ferric reducing assay. Antifungal activity of leaf extract was determined by Poisoned food technique. Results: Leaf extract was shown to scavenge DPPH radicals dose dependently with IC50 value of 51.39µg/ml. An increase in the absorbance on increasing concentration of leaf extract indicated ferric reducing activity. The extract showed more or less similar inhibitory activity against Aspergillus niger and Bipolaris sp. (>50% inhibition). Conclusion: The results of the study indicate that leaf extract possesses bioactive principles with activity against oxidative damage and seed-borne fungi which are to be purified and screened for antioxidant and antifungal activity. Keywords: Geophila repens, Maceration, DPPH, Ferric reducing, Seed-borne fungi, Poisoned food technique


2016 ◽  
Vol 34 (4) ◽  
pp. 675-680 ◽  
Author(s):  
A.Z. SHERAZI ◽  
K. JABEEN ◽  
S. IQBAL ◽  
Z. YOUSAF

ABSTRACT Chenopodium album, leaves were selected to evaluate their antifungal potential against Ascochyta rabiei causative agent for chickpea blight. Different concentrations of methanolic extract of C. album leaves i.e. 1%, 2.5%, 4%, 5.5% and 7% were tested against the target fungus A. rabiei. Maximum reduction in the test fungal biomass (68%) was observed in 7% concentration. This methanolic leaf extract was partitioned and n-butanol, chloroform, n-hexane, ethyl acetate fractions were isolated according to their polarity. In vitro antifungal activity of these fractions was studied by serial dilution method. n-hexane fraction exhibited the highest antifungal potential with 55% inhibition in test fungal biomass, so this fraction was selected for Gas chromatography mass spectrometry (GC-MS) analysis. Total thirteen compounds identified in this analysis belonged to class aromatic hydrocarbons, hydrocarbons, saturated fatty acids, aromatic carboxylic acid, siloxanes, phosphonates and cardiac glycosides. These compounds might be responsible for antifungal activity of C. album.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
S. KHURSHID ◽  
A. JAVAID ◽  
A. SHOAIB ◽  
S. JAVED ◽  
U. QAISAR

ABSTRACT: Antifungal potential of aerial parts of an allelopathic grass Cenchrus pennisetiformis (Hochst. & Steud.) Wipff. was evaluated against Fusarium oxysporum f. sp. lycopersici Snyder & Hansen, a fungal pathogen causing wilt disease in tomato (Solanum lycopersicum L.). Different concentrations (1% to 6%) of methanolic leaf, stem and inflorescence extract of the grass significantly reduced fungal biomass by 40-88%, 13-89%, and 26-76%, respectively. Methanolic shoot (leaf + stem) extract was fractionated using four organic solvents viz. n-hexane, chloroform, ethyl acetate and n-butanol. All the sub-fractions of methanolic shoot extract showed remarkable antifungal potential to variable extents. Different concentrations (1.56-200 mg mL-1) of ethyl acetate sub-fraction exhibited the best antifungal activity resulting in 49-100% suppression in the fungal biomass. GC-MS analysis of ethyl acetate sub-fraction showed the presence of 10 compounds. Phenol, 2,4-bis{1,1-dimethlethyl}- was the major compound (30.99%) followed by hexadecanoic acid, ethyl-ester (21.72%), benzofuran 2,3-dihydro (10.65%), 1-propanol-2-2-hydroxypropxy (10.60%) and 1-eicosene (8.32%).


2021 ◽  
Vol 27 (1) ◽  
pp. 101-108
Author(s):  
Iqra Haider Khan ◽  
Arshad Javaid ◽  
Nadeem Shad

The fungus Aspergillus versicolor is generally found on food products and produces sterigmatocystin, a carcinogenic and hepatotoxic mycotoxin. This study reports the usefulness of polar and non-polar fractions of methanolic extract of hemp (Cannabis sativa L.) leaves against this fungus. Dried leaves of hemp were soaked in methanol for two weeks. After filtration and evaporation, water was added to the residual and partitioned with n-hexane, chloroform, ethyl acetate and n-butanol. Different concentrations of each fraction were prepared which ranged from 1.562 to 200 mg mL-1. Antifungal activity was carried out in malt extract broth medium. In general, all the concentrations of the four organic solvent fractions significantly controlled the growth of A. versicolor. There was 71–82%, 59–82%, 65–80% and 69–82% decline in biomass of A. versicolor due to n-hexane, chloroform, ethyl acetate and n-butanol fractions, respectively. It is concluded that different fractions of leaf extract of C. sativa has remarkable potential in controlling growth of A. versicolor.


Fungal disease is one of the major problems in agriculture. Fungal pathogens are accountable for approximately 85% of plant diseases. Apart from these, public health conditions are also influenced by consequential fungal infection as well as approximately 1.5 million killed and more than a billion people were affected by fungal disease. Our present exploration has been conducted to assess the antifungal efficiency of Azadirachta indica, Ocimum tenuiflorum, and Murraya paniculata leaf extract against three phytopathogenic fungi viz. Pichia kudriavzevii, Lasiodiplodia theobromae and Fusarium oxysporum, at the concentration of 300 µg/disc by food poisoned technique. The result showed that all of these three extracts have significant antifungal efficiency against all of the tested fungus. Maximum antifungal activity was recorded in Murraya paniculata with an inhibition percentage of 100% (0.00±0.000 mm) against three fungi. In addition, Lasiodiplodia theobromae and Fusarium oxysporum, growth was totally suppressed in terms of Ocimum tenuiflorum and Murraya paniculata extract. The lowest antifungal effect was 47.18% (34.33±0.272 mm) revealed in Azadirachta indica extract against Pichia kudriavzevii. Among these three extracts, the order of antifungal effect was Murraya paniculata˃Ocimum tenuiflorum˃Azadirachta indica. Amis of this screening to focus antifungal effects of three experimental medicinal plants. These findings indicate leaf of these three plants may be useful for the treatment of various diseases associated with these fungi and could be useful to develop novel, secure and fecund bio-fertilizer for pest control. Further phytochemicals analysis is required to evaluate the compounds responsible for their antifungal effects.


2020 ◽  
Vol 49 (4) ◽  
pp. 1045-1051
Author(s):  
Iqra Haider Khan ◽  
Arshad Javaid

Dry leaves of quinoa (Chenopodium quinoa Willd.) were extracted in methanol and its n-butanol fraction was separated. Solvent was evaporated and antifungal bioassays were carried out against Macrophomina phaseolina using different concentrations (1.562, 3.125, 6.25, 12.50, 25, 50, 100, 200 mg/ml) of the extract in malt extract broth. The entire set of concentrations significantly controlled the fungal growth. The lowermost concentration of the extract (1.562 mg/ml) reduced M. phaseolina biomass by 62% over control while all other concentrations completely controlled fungal growth. GC-MS analysis showed that there were 20 compounds in this fraction. Stigmasta-7,16-dien-3-ol was the predominant compound with peak area of 15.14% followed by 1-butanol, 3-methyl- (11.87%), β-sitosterol (9.93%), γ-sitosterol (8.84%), butane, 2-[1-methylethyl) thio]- (6.51%), cyclohexane, 1,1-dimethoxy- (6.27%), stigmasterol (5.98%) and stigmastanol (4.57%). The compounds such as 1-butanol, 3-methyl-; γ-sitosterol and stigmasterol present in n-butanol fraction of methanolic leaf extract of quinoa are highly and likely to be responsible for antifungal activity against M. phaseolina.


2019 ◽  
Vol 9 (4) ◽  
pp. 330-340
Author(s):  
Mitradev Pattoo ◽  
Vuyokazi Belewa ◽  
Benesh Munilal Somai

Background:In both the developed and developing world, the mortality rates of people afflicted with cryptococcosis are unacceptably high despite the availability of antifungal therapy. The disease is caused by Cryptococcus neoformans (predominantly in immunocompromised individuals) and by Cryptococcus gattii. Globally the disease is estimated to cause around 600,000 deaths annually. Antifungal therapy is available, but in the developing world, may be unaffordable to many people, there is an increasing threat of resistance to the available drugs and our repertoire of antifungal drugs is very limited. Consequently, more research has been focusing on the use of medicinal plants as therapeutic agents. The originality of the current study is that although Tulbaghia violacea is a well-documented medicinal plant, the chemical composition of aqueous extracts and their antifungal potential against pathogenic yeasts are unknown. This is the first study that evaluates the chemical constituents of aqueous T. violacea root, leaf, rhizome and tuber extracts and their corresponding antifungal activities against C. neoformans and C. gattii.Objectives:The study aimed to investigate the phytochemical composition and antifungal potential of Tulbaghia violacea root, leaf, rhizome and tuber extracts against Cryptococcus neoformans and Cryptococcus gattii.Methods:Roots, leaves, rhizomes and tubers were extracted with water only for 48 h at room temperature with continuous shaking. Extracts were filter sterilized, freeze-dried and, chemically analyzed for saponin, flavonol, phenolic and tannin content. Chemical constituents of each extract were also identified by GC-MS analysis. The Minimum Inhibitory Concentration (MIC) of suitably diluted extracts of each plant part were also performed against C. neoformans and C. gattii, yeast pathogens commonly associated with HIV/AIDS sufferers.Results:Phytochemical analysis showed different concentrations of saponins (between 1023 and 2896.73 µg/ml), phenolics (between 16.48 and 51.58 µg/ml) and tannins (between 122.30 and 543.07 µg/ml) present in the different extracts. No flavonols were detected. GC-MS analysis identified a complex mixture of phytochemicals composed predominantly of sulphide, pyran, furan and ketone containing compounds to be present in the different plant parts. All extracts were dominated by the presence of 4 H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, a pyran known to have antifungal properties. Although the root, leaf, rhizome and tuber extracts exhibited antifungal activities against both fungi, the rhizome and tuber extract were found to possess the lowest MIC’s of 1.25 mg/ml and 2.5 mg/ml against Cryptococcus neoformans and Cryptococcus gattii respectively.Conclusion:T. violacea extracts have a complex constituent of phytochemicals and each plant part exhibited a strong antifungal activity against C. neoformans and C. gattii. The rhizome and tuber extracts showed the highest antifungal activity against C. neoformans and C. gattii respectively. Thus, T. violacea aqueous extracts are strong candidates for further development into an antifungal chemotherapeutic agent.


Sign in / Sign up

Export Citation Format

Share Document