scholarly journals Gearless Powertrain for Electric Vehicles

2021 ◽  
Author(s):  
Atif Iqbal ◽  
Prathap Reddy ◽  
Mohammad Meraj

Electrical Machines are driving the modern world in one way or the other. The modern world is moving towards the sustainability of ecological systems and greener modes of transportation to stabilize the environmental conditions for future generations. For this, the multiphase machines have risen as efficient solutions over traditional 3-phase electrical machines. In this project, a Pole Phase Modulated (PPM) multiphase induction motor drive is developed for gearless electric vehicle applications. With the help of conventional pole changing techniques (like using multiple auxiliary windings or dual stator windings) variable speed and torques can be achieved but the poor copper utilization, de-energization of the windings, and multiple auxiliary windings are the major limitations. In this project, a novel single stator winding multiphase induction motor is developed that is capable of delivering variable speed-torques by varying the number of phases as well as poles simultaneously using novel multiphase power converter topologies. Moreover, the proposed drive offers high fault-tolerant capability, the ability to handle high power with reduced voltage ratings of power electronic devices, better torque/power distribution, and improved efficiency with a lesser magnitude of space harmonics, etc. The proposed drive gives similar speed torque characteristics of conventional IC-based conventional vehicles, which helps in the elimination of the gearbox system in the EVs. This minimizes the cost, size, weight, and volume of the vehicle. Two-level inverters and multilevel inverters with carrier phase shifted space vector PWM are developed for achieving the better performance of the PPM-based MIM drive w.r.t. efficiency, torque ripple and DC link utilization. Fault-tolerant operation of the drive with respect to inverter switch or source failures is also developed as a part of the project and presented. To operate the PPM-based MIM drive smoothly in different pole phase combinations, the indirect field-oriented vector control is developed and presented.

Author(s):  
Umakanta Mahanta ◽  
Bhabesh Chandra Mohanta ◽  
Anup Kumar Panda ◽  
Bibhu Prasad Panigrahi

Torque ripple reduction is one of the major challenges in switching table-based direct torque control (DTC) while operating for open phase faults of an induction motor, as the switching vectors are unevenly distributed. This can be minimized by increasing the level of the inverter and with the use of multi-phase motors. Fuzzy logic-based DTC is another solution to the above problem. In this paper, a comparative analysis is done between switching table-based DTC (ST-DTC) and fuzzy logic-based DTC for increasing the performance during open phase faults of a five-phase induction motor. The result shows that in fuzzy logic-based DTC with a two-level inverter, the torque ripple is reduced by 5.164% as compared with ST-DTC with a three-level inverter. The fuzzy logic-based DTC with the three-level inverter also gives better performance as compared with fuzzy logic-based DTC with the two-level inverter. The current ripple also reduced by 9.605% with respect to ST-DTC. Thus, fuzzy logic-based DTC is more suitable and cost effective for open phase fault-tolerant drives.


1998 ◽  
Vol 120 (02) ◽  
pp. 86-87
Author(s):  
Greg Paula

This article reviews variable-switched reluctance (VSR) motors that are now entering mainstream use from jet fighters to washing machines. A VSR motor is generally used as a stepper motor and, if properly controlled, can be made to behave like a servomotor. Basically, the motor is a rotor and stator with a coil winding in the stator. VSR motors also provide other benefits. They can be programmed to precisely match the loads they serve, and their simple, rugged construction has no expensive magnets or squirrel cages like the ac induction motor. It can be difficult to give VSR motors a smooth torque profile, so they are used more often in place of variable speed motors than as servomotors. There are ways to control torque ripple, such as adding encoders and electronics to compensate, but these added controls could cost at least as much as what the motor itself would save. VSR motors work with relatively small air gaps. If the shaft is off-center, unbalanced tangential forces come into play, so shafts and bearing systems generally need to be of a higher quality than with other motors.


2016 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Suroso Suroso ◽  
Winasis Winasis ◽  
Daru Tri Nugroho ◽  
Sebastian Adi Prakoso

<p align="justify"><em>One of the  the inverter’s applications is in Variable Speed Drive (VSD) to control the speed of an induction motor by varying  the voltage or the output frequency of the inverter. Induction motor reliability driven by using inverter is often affected by harmonics components of the current and voltage  generated by the inverter. This phenomenon brings harmonic losses in the industry process applying VSD and induction motors, because not all inverters produce a pure sinusoidal wave. Thi paper presents the effect of harmonics on the performance of squirrel cage induction motor type i.e. the speed, torque and efficiency by conducting computer simulation and experimental test in laboratory. The increase in the value of harmonics resulting an increase in the value of speed 1.41%, an increase in the value of torque 1.81 Nm, and decreased of efficiency 1to5%, the harmonics also resulted torque ripple 2 to5 times resulting in unstable speed of motor, arising engine vibration and causing motor heating</em></p>


2012 ◽  
Vol 433-440 ◽  
pp. 6776-6782
Author(s):  
Yi Feng Wu ◽  
Zhi Quan Deng ◽  
Yu Wang

In order to realize high power and reliability of speed control system, fault-tolerant induction motor control system based on three-level inverter is studied in this paper. Based on three-level inverter, a fault-tolerant inverter topology with an extra leg providing the current path during the post-fault operation is proposed. A corresponding control strategy is investigated to avoid voltage drift of the dc link midpoint. In this paper, an induction motor direct slip linear control (DSLC) is employed and investigated to reduce torque ripple and flux magnitude deviation in three-level system. Both simulation and experimental system have been set up to verify the effectiveness of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document