scholarly journals INTRODUCING EXHALED HUMAN BREATH WATER VAPOR AS PROPOSED MECHANISM INFLUENCING SUPERFICIAL CUTANEOUS WOUND HEALING

Author(s):  
Abraham A. Embi

The concept that moist wounds heal faster than dry wounds was introduced in 1962. Most recently, in 1990 the concept was revisited with the introduction of a highly permeable wound dressing exposed to water vapors. The latter allows for water as a humidifying agent. Ideally, acceleration of superficial wound healing had been accomplished by the introduction of a highly water vapor permeable wound dressing. The breathable property allows for water vapor to interact with already present fibrin(ogen) material in blood clots. This manuscript adds a mechanism for the ultimate undisturbed success in cutaneous wound healing, being the dependency on a continuos supply of water vapor. In vitro experiments are introduced showing the cessation of exhaled human breath vapor onto a dry human blood smear as the end point of said interaction. Additionally the experiments were reproduced by exposing the blood smears to steam (water vapor) generated by machinery. In conclusion, exhaled human breath water vapor blown onto a blood clot has the same effect as water vapor emitted by machinery boiling water. Both causing a disappearance of the clot organized fibrin strands into a semisolid gelatinous state. Additionally, discontinuation of the water vapor infusion is also documented triggering a return of organized fibrin strands, albeit of greater intensity.

Author(s):  
Ghazal Shabestani Monfared ◽  
Peter Ertl ◽  
Mario Rothbauer

Cutaneous wound healing is a complex multi-stage process involving direct and indirect cell communication events with the aim of efficiently restoring the barrier function of the skin. One key aspect in cutaneous wound healing is associated with cell movement and migration into the physically, chemically and biologically injured area resulting in wound closure. Understanding the conditions under which cell migration is impaired and elucidating the cellular and molecular mechanisms that improve healing dynamics is therefore crucial in devising novel therapeutic strategies to elevate patient suffering, reduce scaring and eliminate chronic wounds. Following the global trend towards automation, miniaturization and integration of cell-based assays into microphysiological systems, conventional wound healing assays such as the scratch assay or cell exclusion assay have recently been translated and improved using microfluidics and lab-on-a-chip technologies. These miniaturized cell analysis systems allow precise spatial and temporal control over a range of dynamic microenvironmental factors including shear stress, biochemical and oxygen gradients to create more reliable in vitro models that resemble the in vivo microenvironment of a wound more closely on a molecular, cellular, and tissue level. The current review provides (a) an overview on the main molecular and cellular processes that take place during wound healing, (b) a brief introduction into conventional in vitro wound healing assays, and (c) a perspective on future cutaneous and vascular wound healing research using microfluidic technology.


2010 ◽  
Vol 196 ◽  
pp. S152
Author(s):  
S. Letasiova ◽  
P. Hayden ◽  
G. Stolper ◽  
A. Armento ◽  
C. Cooney ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 793
Author(s):  
Ghazal Shabestani Monfared ◽  
Peter Ertl ◽  
Mario Rothbauer

Cutaneous wound healing is a complex, multi-stage process involving direct and indirect cell communication events with the aim of efficiently restoring the barrier function of the skin. One key aspect in cutaneous wound healing is associated with cell movement and migration into the physically, chemically, and biologically injured area, resulting in wound closure. Understanding the conditions under which cell migration is impaired and elucidating the cellular and molecular mechanisms that improve healing dynamics are therefore crucial in devising novel therapeutic strategies to elevate patient suffering, reduce scaring, and eliminate chronic wounds. Following the global trend towards the automation, miniaturization, and integration of cell-based assays into microphysiological systems, conventional wound healing assays such as the scratch assay and cell exclusion assay have recently been translated and improved using microfluidics and lab-on-a-chip technologies. These miniaturized cell analysis systems allow for precise spatial and temporal control over a range of dynamic microenvironmental factors including shear stress, biochemical and oxygen gradients to create more reliable in vitro models that resemble the in vivo microenvironment of a wound more closely on a molecular, cellular, and tissue level. The current review provides (a) an overview on the main molecular and cellular processes that take place during wound healing, (b) a brief introduction into conventional in vitro wound healing assays, and (c) a perspective on future cutaneous and vascular wound healing research using microfluidic technology.


2019 ◽  
Vol 8 (4) ◽  
pp. 533 ◽  
Author(s):  
Dong Kyung Sung ◽  
Yun Sil Chang ◽  
Se In Sung ◽  
So Yoon Ahn ◽  
Won Soon Park

The aim of this study was to determine the optimal preconditioning regimen for the wound healing therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs). To this end, we compared various preconditioning regimens for both the quantitative and qualitative production of MSC-derived EVs, and their therapeutic efficacy for proangiogenic activity in vitro and cutaneous wound healing in vivo. After preconditioning with thrombin (40 U), H2O2 (50 μM), lipopolysaccharide (1 μg/mL), or hypoxia (10% O2), EV secretion was assessed quantitatively by measuring production per cell and protein quantification, and qualitatively by measuring a proteome profiler and an enzyme-linked immunosorbent assay (ELISA) contained within EVs. The therapeutic efficacy of EVs was assessed in vitro by proliferation, migration and tube formation assays of human umbilical cord blood endothelial cells (HUVECs), and in vivo by quantification of cutaneous wound healing. Thrombin preconditioning optimally boosted EV production and enriched various growth factors including vascular endothelial growth factor and angiogenin contained within EVs compared to other preconditioning regimens. Thrombin preconditioning optimally enhanced proliferation, the migration and tube formation of HUVECs in vitro via pERK1/2 and pAKT signaling pathways, and cutaneous wound healing in vivo compared to other preconditioning regimens. Thrombin preconditioning exhibited optimal therapeutic efficacy compared with other preconditioning regimens in promoting proangiogenic activity in vitro and in enhancing cutaneous wound healing in vivo. These preconditioning regimen-dependent variations in therapeutic efficacy might be mediated by boosting EV production and enriching their cargo content.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3097 ◽  
Author(s):  
Ruth Naomi ◽  
Juthamas Ratanavaraporn ◽  
Mh Busra Fauzi

The use of hybridisation strategy in biomaterials technology provides a powerful synergistic effect as a functional matrix. Silk fibroin (SF) has been widely used for drug delivery, and collagen (Col) resembles the extracellular matrix (ECM). This systematic review was performed to scrutinise the outcome of hybrid Col and SF for cutaneous wound healing. This paper reviewed the progress of related research based on in vitro and in vivo studies and the influence of the physicochemical properties of the hybrid in wound healing. The results indicated the positive outcome of hybridising Col and SF for cutaneous wound healing. The hybridisation of these biomaterials exhibits an excellent moisturising property, perfectly interconnected structure, excellent water absorption and retention capacity, an acceptable range of biodegradability, and synergistic effects in cell viability. The in vitro and in vivo studies clearly showed a promising outcome in the acceleration of cutaneous wound healing using an SF and Col hybrid scaffold. The review of this study can be used to design an appropriate hybrid scaffold for cutaneous wound healing. Therefore, this systematic review recapitulated that the hybridisation of Col and SF promoted rapid cutaneous healing through immediate wound closure and reepithelisation, with no sign of adverse events. This paper concludes on the need for further investigations of the hybrid SF and Col in the future to ensure that the hybrid biomaterials are well-suited for human skin.


Sign in / Sign up

Export Citation Format

Share Document