scholarly journals POLA SPASIAL DAN TEMPORAL JENIS AWAN DI SELATAN INDONESIA BERDASARKAN KANAL IR1 HIMAWARI-8 PADA PERIODE MUSIM HUJAN

2020 ◽  
Vol 21 (1) ◽  
pp. 23-35
Author(s):  
Robi Muharsyah ◽  
Novi Fitrianti

Banyak kajian yang telah membahas perkiraan jenis awan atau intensitas curah hujan menggunakan citra satelit cuaca HIMAWARI-8, namun umumnya dalam skala wilayah yang kecil (pada satu kota) dan rentang waktu yang singkat (pengamatan beberapa jam). Penelitian ini bertujuan untuk mengidentifikasi pola spasial dan temporal jenis awan yang diduga dari kanal IR1 HIMAWARI-8, pada cakupan wilayah yang lebih luas, yaitu di bagian selatan Indonesia (80E-150E;15S-1N), serta pada periode pengamatan lebih lama (musim hujan 2017/2018). Metode Convective Stratiform Technique (CST) dipilih untuk menduga jenis awan Stratiform dan Cumuliform. Hasilnya secara temporal, awan Stratiform lebih dominan muncul pada sore hingga malam hari. Kemudian secara spasial, bagian barat di selatan Indonesia selalu diliputi awan Stratiform dari pagi hingga malam hari. Berdasarkan jumlah awan Cumuliform, puncak musim hujan terjadi pada 21–31 Januari 2018. Penelitian ini juga menunjukkan bahwa juga jumlah pixel awan Cumuliform berkorelasi kuat (r>0,75) terhadap jumlah pixel citra Global Satellite Mapping of Precipitation Near Real Time (GSMaP) dengan intensitas curah hujan >0,1 mm/jam. Terakhir, penelitian ini memberikan suatu pendekatan baru untuk mengukur akurasi antara jenis awan yang diduga dari kanal IR1 HIMAWARI-8 dengan terjadinya curah hujan di suatu wilayah yang dapat dipakai untuk mengevaluasi fenomena pada skala meso seperti Mesoscale Convective Complex (MCC).

2020 ◽  
Author(s):  
Kinji Furukawa ◽  
Takuji Kubota ◽  
Moeka Yamaji ◽  
Tomoko Tashima ◽  
Yuki Kaneko ◽  
...  

<p>The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The GPM Core Observatory, launched on February 2014, carries the Dual-frequency Precipitation Radar (DPR) by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT).</p><p>JAXA is continuing DPR data monitoring to confirm that DPR function and performance are kept on orbit. A scan pattern of the DPR was changed in May 2018. The next product applying the new scan pattern will be released as an experimental product (V06X) in 2020. The DPR follow-on mission has been actively discussed in Japan.</p><p>JAXA also develops the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. GSMaP has been used for various research fields and JAXA keeps it developed and improved, in cooperation with domestic/international partner agencies.</p><p>The GSMaP near-real-time version (GSMaP_NRT) product provides global rainfall map in 4-hour after observation, and recently GSMaP near-real-time gauge-adjusted version (GSMaP_Gauge_NRT) product has been published. The higher priority to data latency time than accuracy leads to wider utilization by various users for various purposes, such as rainfall monitoring, flood alert and warning, drought monitoring, crop yield forecast, and agricultural insurance.</p><p>Improved GSMaP_Gauge_NRT product (v6) was open to the public in Dec. 2018. Correction coefficients are calculated using past 30 days based upon Mega et al. (2019)’s method. We completed reprocessing of past 19yr data record (since Mar. 2000). Validations with reference to the JMA radar around Japan show smaller RMSEs in this new product than the current NRT (no gauge-correction).</p><p>JAXA started to provide the GSMaP real-time product called GSMaP_NOW by using the geostationary satellite Himawari-8 operated by the Japan Meteorological Agency (JMA) since November 2015. Recently, the domain of GSMaP_NOW was extended to the global region in June 2019. Furthermore, we developed the gauge-adjusted real-time version, GSMaP_Gauge_NOW, which was also released in June 2019. In the method, estimates from the GSMaP_NOW are adjusted using an optimization model (Mega et al. 2019) with parameters calculated from the GSMaP_Gauge (gauge-adjusted standard version) during the past 30 days.</p><p>GSMaP products can be seen via website and easy to monitor the global rainfall with good latency. GSMaP since March 2000 up to 4-hour after observation is available from the “JAXA Global Rainfall Watch” website (https://sharaku.eorc.jaxa.jp/GSMaP/index.htm); while GSMaP_NOW product is from the "JAXA Realtime Rainfall Watch" web site (https://sharaku.eorc.jaxa.jp/GSMaP_NOW/index.htm).</p>


Annals of GIS ◽  
2015 ◽  
Vol 21 (3) ◽  
pp. 175-190 ◽  
Author(s):  
Linlin Ge ◽  
Alex Hay-Man Ng ◽  
Xiaojing Li ◽  
Youtian Liu ◽  
Zheyuan Du ◽  
...  

2014 ◽  
Vol 142 (11) ◽  
pp. 4108-4138 ◽  
Author(s):  
Russ S. Schumacher ◽  
Adam J. Clark

Abstract This study investigates probabilistic forecasts made using different convection-allowing ensemble configurations for a three-day period in June 2010 when numerous heavy-rain-producing mesoscale convective systems (MCSs) occurred in the United States. These MCSs developed both along a baroclinic zone in the Great Plains, and in association with a long-lived mesoscale convective vortex (MCV) in Texas and Arkansas. Four different ensemble configurations were developed using an ensemble-based data assimilation system. Two configurations used continuously cycled data assimilation, and two started the assimilation 24 h prior to the initialization of each forecast. Each configuration was run with both a single set of physical parameterizations and a mixture of physical parameterizations. These four ensemble forecasts were also compared with an ensemble run in real time by the Center for the Analysis and Prediction of Storms (CAPS). All five of these ensemble systems produced skillful probabilistic forecasts of the heavy-rain-producing MCSs, with the ensembles using mixed physics providing forecasts with greater skill and less overall bias compared to the single-physics ensembles. The forecasts using ensemble-based assimilation systems generally outperformed the real-time CAPS ensemble at lead times of 6–18 h, whereas the CAPS ensemble was the most skillful at forecast hours 24–30, though it also exhibited a wet bias. The differences between the ensemble precipitation forecasts were found to be related in part to differences in the analysis of the MCV and its environment, which in turn affected the evolution of errors in the forecasts of the MCSs. These results underscore the importance of representing model error in convection-allowing ensemble analysis and prediction systems.


2017 ◽  
Vol 145 (8) ◽  
pp. 3119-3142 ◽  
Author(s):  
Alexander A. Jacques ◽  
John D. Horel ◽  
Erik T. Crosman ◽  
Frank L. Vernon

Mesoscale convective phenomena induce pressure perturbations that can alter the strength and magnitude of surface winds, precipitation, and other sensible weather, which, in some cases, can inflict injuries and damage to property. This work extends prior research to identify and characterize mesoscale pressure features using a unique resource of 1-Hz pressure observations available from the USArray Transportable Array (TA) seismic field campaign. A two-dimensional variational technique is used to obtain 5-km surface pressure analysis grids every 5 min from 1 March to 31 August 2011 from the TA observations and gridded surface pressure from the Real-Time Mesoscale Analysis over a swath of the central United States. Bandpass-filtering and feature-tracking algorithms are employed to isolate, identify, and assess prominent mesoscale pressure perturbations and their properties. Two case studies, the first involving mesoscale convective systems and the second using a solitary gravity wave, are analyzed using additional surface observation and gridded data resources. Summary statistics for tracked features during the period reviewed indicate a majority of perturbations last less than 3 h, produce maximum perturbation magnitudes between 2 and 5 hPa, and move at speeds ranging from 15 to 35 m s−1. The results of this study combined with improvements nationwide in real-time access to pressure observations at subhourly reporting intervals highlight the potential for improved detection and nowcasting of high-impact mesoscale weather features.


2019 ◽  
Vol 6 (1) ◽  
pp. 58-66
Author(s):  
Ilham Fajar Putra Perdana ◽  
Yosza Indra Rismana ◽  
Ferdian Adhy Prasetya ◽  
Adi Mulsandi

Mesoscale Convective Complex (MCC) pertama kali diperkenalkan oleh Maddox pada tahun 1980. MCC merupakan salah satu jenis Mesoscale Convective System (MCS) yang memiliki ukuran lebih dari 100.000 km2 dan waktu hidup lebih dari 6 jam yang dapat menghasilkan cuaca buruk dan curah hujan yang berkelanjutan. Pada tanggal 9 Mei 2018, sebuah MCC tumbuh di wilayah Papua bagian selatan. Penelitian ini bertujuan untuk mengetahui karakteristik pertumbuhan MCC, kondisi atmosfer, dan distribusi curah hujan di sekitar wilayah Papua bagian selatan. Hasil citra satelit kanal infrared (IR) menunjukkan bahwa MCC yang ada tumbuh hingga mencapai luasan > 300.000 km2 dengan waktu hidup selama 14 jam. Distribusi curah hujan citra Global Satellite Mapping (GSMaP) menunjukkan adanya daerah hujan sepanjang 800 km dengan intensitas curah hujan yang beragam hingga mencapai 40 mm/jam. Analisis kondisi atmosfer juga dilakukan terhadap parameter angin, kelembapan relatif, divergensi, dan vertical velocity dari data model European Centre for Medium-Range Weather Forecasts (ECMWF). Berdasarkan hasil analisis secara deskriptif, konvergensi terjadi di wilayah Papua bagian selatan pada troposfer bagian bawah pada saat fase pertumbuhan MCC yang disertai dengan kondisi kelembapan udara yang tinggi di lapisan 850 hPa. Deret waktu nilai vertical velocity juga menggambarkan adanya proses pertumbuhan dan peluruhan MCC di wilayah Papua bagian selatan pada 9-10 Mei 2018.


1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


Sign in / Sign up

Export Citation Format

Share Document