scholarly journals Reactive Black 5 (RB5): Pengolahan Air Limbah Tekstil dengan Adsorbsi Menggunakan Powdered Karbon Aktif

2021 ◽  
Vol 22 (2) ◽  
pp. 199-205
Author(s):  
Iva Yenis Septiariva ◽  
I Wayan Koko Suryawan ◽  
Ariyanti Sarwono

ABSTRAK Umumnya, industri tekstil menggunakan berbagai pewarna sintetis yang menghasilkan air limbah yang sangat berwarna. Oleh karenaitu, air limbah tekstil ini harus diolah sebelum dibuang ke lingkungan. Penelitian ini bertujuan untuk mengetahui penyisihan warna dengan teknik adsorpsi menggunakan karbon aktif. Metode ini dianggap sebagai teknologi berbiaya rendah dan perawatan yang mudah untuk pengolahan air limbah. Proses adsorpsi batch dilakukan dengan waktu kontak yang berbeda yaitu 5–60 menit dan variasi konsentrasi awal yang mengandung Reactive Black 5 (RB-5) sebesar 5 mg/L; 10 mg/L; 15 mg/L; dan 20 mg/L. Azo-Reactive Black-5 adalah material pewarna yang digunakan untuk membuat air limbah artifisial. Hasil penelitian menunjukkan bahwa proses adsorpsi menurunkan kadar konsentrasi warna masing-masing sebesar 86,21%, 85,21%, 84,29%, dan 71,07% selama 60 menit. Peningkatan konsentrasi zat warna dalam air limbah menyebabkan efisiensi penghilangan warna yang rendah. Selain itu, penelitian mengevaluasi efektivitas adsorpsi batch oleh karbon aktif karena efisiensi penghilangan warna dapat mencapai lebih dari 50% setelah waktu kontak 30 menit. Hal ini terlihat pada konsentrasi awal 5 mg/L dan 20 mg/L dengan efisiensi penyisihan sebesar 66,18% dan 53,97%. Kinetika adsorpsi yang sesuai untuk pendekatan pemodelan pada penelitian ini adalah Langmuir isotherm dengan nilai r2 yang lebih besar dan mendekati nilai 1 yaitu 0,9756. Estimasi kapasitas adsorpsi maksimum yang diperoleh dari model sebesar 4,353 mg/g. Kata kunci: Air limbah tekstil, warna, adsorpsi, efisiensi penyisihan   ABSTRACT Generally, the textile industry uses various synthetic dyes that produced a large amount of highly colored wastewater. This research aims to investigate the color removal by adsorption using powdered activated carbon. This method is considered viable due to cost effective and ease of maintenance for wastewater treatment. The batch adsorption process was carried out at different contact times of 5–60 minutes and varied initial dye concentration containing azo-Reactive Black 5 (RB-5) of 5 mg/L; 10 mg/L; 15 mg/L; and 20 mg/L. A synthetic RB-5 was prepared  as the artificial wastewater to simulate the actual wastewater. The adsorption  proceeded initially with higher rates and gradually slowed down until reached a constant value due to the carbon surface's saturation with increasing contact time.The results showed that, at different initial dye concentration, the adsorption process decreased color concentration for 60 minutes by 86.21%, 85.21%, 84.29%, and 71.07% respectively. The increase of initial dye concentration lowers color removal efficiency. Besides, the effectiveness of adsorption by activated carbon was found more than 50% after 30 minute of contact time. The efficiency removal presented initial concentration of 5 mg/ and 20 mg/L was 66.18% and 53.97%, respectively. Langmuir and Freundlich isotherm were also plotted to assess the kinetics of adsorption. Langmuir isotherm gave the best modelling approach for adsorption kinetics as indicated by higher coefficient of determination (r2) of 0.9756. An estimated maximum adsorption capacity obtained from the model was 4.353 mg/g. Keywords: Textile wastewater, color, adsorption, removal efficiency

Author(s):  
Md. Shahin Azad ◽  
Syaza Azhari ◽  
Mohd Sukri Hassan

The utilization of biopolymer derived from Moringa oleifera bark using ZnCl2 and H2SO4 as activating agents for eliminating Methylene blue, Escherichia coli and Pseudomonas aeruginosa from producing wastewater. In this study, Methylene blue and both bacteria were effectively adsorbed by activated carbon with lowest dosage. The activated carbon was prepared from natural-by product of Moringa oleifera bark by pyrolysis in a furnace at 700°C for 1 h. The characteristics of activated carbon have been determined using Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET), pHzpc (zero point charge), and FTIR spectroscopy. The obtained result were closely fitted with Freundlich isotherm model and adsorption kinetics follow the pseudo-second order model with the highest value of correlation coefficient (R2~1). Adsorption quantity was dose dependent and bacteria were maximum adsorbed using 10 mg of activated carbon as well as 25mg for methylene blue. The maximum adsorption capacity showed within 1 hour. The bacterial load was reduced by 98% for E. coli, 96% for P. aeruginosa as well as methylene blue reduced 94.2% from aqueous solution using batch adsorption methods. Adsorption process controlled by film diffusion mechanism. These result proposed that the activated carbon of Moringa oleifera can be used as a good adsorbent for the removal of Methylene blue, E. coli and P. aeruginosa.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yie Chen Lu ◽  
Muhammad Raziq Rahimi Kooh ◽  
Linda Biaw Leng Lim ◽  
Namal Priyantha

In this study, a simple chemical modification was applied to a sustainable and abundantly available resource, kangkong root (KR), to remove methyl violet 2B (MV) dye. The chemically modified adsorbent (NaOH-KR) was obtained using NaOH solution treatment. Batch adsorption experiments were carried out to investigate the effects of pH, ionic strength, contact time, adsorbent dosage, and initial dye concentration. A regeneration experiment was also carried out to assess the potential of reusability. The adsorption process was modelled using various kinetics and isotherm models, whereby the best-fitting models were evaluated by using the coefficient of determination ( R 2 ) and error functions. The Sips ( R 2 = 0.9714 , χ2 =0.16) and pseudo-second-order ( R 2 = 0.9996 , χ 2 = 0.007 ) models were identified to best represent the adsorption process. The Sips model predicted a maximum adsorption capacity at 551.5 mg g-1 for NaOH-KR, which is 55% improvement in performance when compared to nonmodified KR. Lastly, the regeneration experiment showed that NaOH-KR was able to maintain reasonable dye removal even after five consecutive cycles of regenerating and reusing.


2018 ◽  
Vol 96 (12) ◽  
pp. 1101-1114 ◽  
Author(s):  
A.A. El-Bindary ◽  
A.F. Shoair ◽  
H.A. Kiwaan ◽  
A.R. Hawas

Thiourea formaldehyde calcium alginate (TFCA) composite was successfully synthesized and used for removal of Reactive Black 5 (RB5) dye. The synthesized composite was applied and characterized by Fourier transform infrared spectrometer (FTIR) spectra, scanning electron microscope (SEM)/EDS, energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD). SEM and EDX analyses confirm the homogeneity of the sorbent in term of composition. Batch adsorption experiments were performed to evaluate the adsorption conditions such as pH value, dye concentration, contact time, temperature, and sorbent dose, as well as the ionic strength effect. Experimental data have been modeled by using Langmuir, Freundlich, Dubinin Radushkevich (D–R), and Temkin isotherms. Kinetic adsorption data modeled using PFORE, PSORE, Morris Weber, and Elovich in order to determine thermodynamic parameters (ΔG, ΔH, and ΔS) for the dye adsorbent systems. These data indicated an exothermic spontaneous adsorption process that kinetically followed the pseudo second-order adsorption process and removal of RB5 dye from aqueous solution. The results showed that the maximum adsorption capacity was 0.2 mmol g−1, observed at pH 1 and temperature 25 °C. Equilibrium adsorption was achieved within 60 min.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Abdulaziz Ali Alghamdi ◽  
Abdel-Basit Al-Odayni ◽  
Naaser A. Y. Abduh ◽  
Safiah A. Alramadhan ◽  
Mashael T. Aljboar ◽  
...  

The aim of this work was to investigate the adsorptive performance of the polypyrrole-based KOH-activated carbon (PACK) in the removal of the basic dye crystal violet (CV) using a batch adsorption system. The equilibrium data, obtained at different initial CV concentrations ( C 0 = 50 – 500   mg / L ) and temperatures (25–45°C), were interpreted using the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, with the Langmuir model providing a better fit ( R 2 ≥ 0.9997 ) and a maximum adsorption capacity of 497.51 mg/g at 45°C. Under the examined conditions, the values of the thermodynamic parameters free energy, enthalpy, and entropy indicate a spontaneous, endothermic, and physisorption adsorption process. The kinetic data of the adsorption process were very well described by a pseudo-second-order model ( R 2 ≥ 0.9996 ). However, surface diffusion seems to be the main rate-controlling step. Thus, we concluded that PACK shows commercial potential for the removal of cationic dyes such as CV from industrial effluent.


2011 ◽  
Vol 356-360 ◽  
pp. 2616-2619
Author(s):  
Li Yi Ye ◽  
Xiao Xuan Zhang ◽  
Ying Wu Yin ◽  
Song Tu ◽  
Yong Sha

The performance of activated carbon (AC) adsorption process for the treatment of a simulated wastewater of fuchsin basic dye was investigated. The experiment revealed that under the optimum adsorption conditions (initial concentration of wastewater 250 mg L-1of dye, temperature 25 °C and AC dosage 4 g L-1), the color removal efficiency was 98% after 360 min of adsorption. As for the further use of AC, the saturated AC was regenerated by heated 20 min at 600 °C in the atmosphere of N2. Efficiency of regeneration was 99% and the regeneration loss was less than 5%. It indicated that AC was effective in the decolorization of dye wastewater.


2013 ◽  
Vol 60 (1) ◽  
Author(s):  
Mohammed Jibril ◽  
Jaafar Noraini ◽  
Lai Shiou Poh ◽  
Abdullahi Mohammed Evuti

Dalam kajian ini, satu siri eksperimen penjerapan berkelompok telah dijalankan untuk menyiasat kecekapan penyingkiran warna oleh CSAC dan CACs daripada air sisa. Kecekapan penjerapan telah dinilai dengan mengukur peratus penyingkiran warna. Kesan larutan pH, kepekatan adsorben, masa betindak balas dan kepekatan warna asal terhadap kecekapan penyingkiran warna juga telah disiasat. Penjerapan warna optimum dicapai pada pH rendah (pH 1.68), kepekatan warna asal yang rendah (50mg/l) dan 12g/l dos karbon dengan kecekapan penyingkiran sebanyak 75% untuk CAC dan 45% bagi CSAC, dengan pergolakan selama satu jam. Kecekapan penyingkiran warna yang rendah iaitu 25% untuk CAC dan 17% untuk CSAC telah diperoleh pada pH tinggi (ph 9-12), kepekatan warna asal yang tinggi iaitu 100mg/l dan dos karbon yang rendah untuk tempoh penahanan yang sama. Perbandingan antara model isotherm Langmuir dan Freundlich ke atas data penjerapan menunjukkan bahawa model isotermal Langmuir menunjukkan keputusan yang lebih baik dengan pekali korelasi, R2 yang lebih tinggi. Keputusan menunjukkan bahawa CSAC boleh digunakan sebagai alternatif kos rendah untuk CAC untuk menyingkirkan pewarna daripada air sisa tetapi kecekapannya penyingkirannya adalah lebih rendah berbanding CAC. Kata kunci: Warna pengeluaran; air sisa; arang batu; kelapa shell; karbon teraktif; Adsorpsi sesuhu In this study, series of batch adsorption experiment were conducted to examine the color removal efficiency of CSAC and CACs from waste water. The CAC is coal base activated carbon while the CSAC was manufactured in the laboratory. Yellow dye colour (Tartrazine E102) was utilized as the colourant. The adsorption efficiencies of the adsorbents were evaluated and compared by measuring the percentage of color removed. The effects of solution pH, adsorbent concentration, contact time as well as initial color concentration on the colour removal efficiency were also investigated. The optimum adsorption of color was achieved at low pH (pH 1.68), low initial color concentration (50mg/L) and 12g/l carbon dosage with removal efficiency of 75% for CAC and 45% for CSAC, with one hour agitation. Lower colour removal efficiency of 25% for CAC and 17% for CSAC were obtained at higher pH (pH 9-12), higher initial color concentration (100mg/L) and low carbon dosage, under the same retention time. A comparison of the Langmuir and Freundlich isotherm models of the adsorption data shows that Langmuir isotherm shows higher correlation coefficient, R2. The results indicate that CSAC has the potential as a low cost alternative for colour removal but the efficiency is lower than CSAC. Keywords: Color removal; waste water; coal; coconut shell; activated carbon; adsorption isotherm


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2339 ◽  
Author(s):  
Somaia G. Mohammad ◽  
Sahar M. Ahmed ◽  
Abd El-Galil E. Amr ◽  
Ayman H. Kamel

A facile eco-friendly approach for acetampirid pesticide removal is presented. The method is based on the use of micro- and mesoporous activated carbon (TPAC) as a natural adsorbent. TPAC was synthesized via chemical treatment of tangerine peels with phosphoric acid. The prepared activated carbon was characterized before and after the adsorption process using Fourier- transform infrared (FTIR), X-ray diffraction (XRD), particle size and surface area. The effects of various parameters on the adsorption of acetampirid including adsorbent dose (0.02–0.2 g), pH 2–8, initial adsorbate concentration (10–100 mg/L), contact time (10–300 min) and temperature (25–50 °C) were studied. Batch adsorption features were evaluated using Langmuir and Freundlich isotherms. The adsorption process followed the Langmuir isotherm model with a maximum adsorption capacity of 35.7 mg/g and an equilibration time within 240 min. The adsorption kinetics of acetamiprid was fitted to the pseudo-second-order kinetics model. From the thermodynamics perspective, the adsorption was found to be exothermic and spontaneous in nature. TPAC was successfully regenerated and reused for three consecutive cycles. The results of the presented study show that TPAC may be used as an effective eco-friendly, low cost and highly efficient adsorbent for the removal of acetamiprid pesticides from aqueous solutions.


2017 ◽  
Vol 52 (1) ◽  
pp. 31-42
Author(s):  
MA Rahman ◽  
T Ahmed ◽  
IN Salehin ◽  
MD Hossain

Powdered Activated carbon (PAC) developed from date seeds was used as an adsorbent for the removal of color from textile wastewater. Batch adsorption experiments were performed in the laboratory with varying process parameters (temperature, pH, agitation, adsorbent dosage, particle size) over a range of contact periods and wastewater pollutant (color) levels. It was found that the removal mechanism could be better characterized by the Freundlich adsorption isotherm model compared to the Langmuir model. Also, The Lagergren's pseudo 2nd order kinetic model fitted relatively well ( = 0.99) over the selected range of contact times (5-60 minutes) and initial color concentrations (800-1200 Pt-Co unit) compared to the pseudo-first order model indicating that chemisorption may be playing a dominant role in the adsorption process. Both external film and intra-particle pore diffusion mechanism were involved in the adsorption process but film diffusion was found to be rate limiting. While analyzing the thermodynamics, the negative value of free energy (-1.83 to -3.4 KJ/mole), positive value of enthalpy (0.26 to 0.28 KJ/mole) and entropy (0.97 to 1.01 J/K/Mole) associated with the color removal mechanism indicated that adsorption was spontaneous and endothermic with increased disorder and randomness at the solid-liquid interface of the date seeds PAC. These experiments suggests that date seeds PAC is a very effective adsorbent, capable of removing a significant amount of color from industrial wastewater if process variables can be optimized and can be explored as a potential low-cost alternative to expensive tertiary treatment options.Bangladesh J. Sci. Ind. Res. 52(1), 31-42, 2017


Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2498 ◽  
Author(s):  
Marwa Elkady ◽  
Hassan Shokry ◽  
Hesham Hamad

Nano-activated carbon (NAC) prepared from El-Maghara mine coal were modified with nitric acid solution. Their physico-chemical properties were investigated in terms of methylene blue (MB) adsorption, FTIR, and metal adsorption. Upon oxidation of the ACS with nitric acid, surface oxide groups were observed in the FTIR spectra by absorption peaks at 1750–1250 cm−1. The optimum processes parameters include HNO3/AC ratio (wt./wt.) of 20, oxidation time of 2 h, and the concentration of HNO3 of 10% reaching the maximum adsorption capacity of MB dye. Also, the prepared NAC was characterized by SEM, EDX, TEM, Raman Spectroscopy, and BET analyses. The batch adsorption of MB dye from solution was used for monitoring the behavior of the most proper produced NAC. Equilibrium isotherms of MB dye adsorption on NAC materials were acquired and the results discussed in relation to their surface chemistry. Langmuir model recorded the best interpretation of the dye adsorption data. Also, NAC was evaluated for simultaneous adsorption of six different metal ions (Fe2+, Ni2+, Mn2+, Pb2+, Cu2+, and Zn2+) that represented contaminates in petrochemical industrial wastewater. The results indicated that the extracted NAC from El-Maghara mine coal is considered as an efficient low-cost adsorbent material for remediation in both basic dyes and metal ions from the polluted solutions.


Sign in / Sign up

Export Citation Format

Share Document