scholarly journals Mestranol moieties clicked to Zn(II)phthalocyanine for controllable photosensitized oxidation of cholesterol

2021 ◽  
Vol 5 (1) ◽  
pp. 041-048
Author(s):  
Mantareva Vanya ◽  
Syuleyman Meliha ◽  
Slavova-Kazakova Adriana ◽  
Angelov Ivan ◽  
Durmus Mahmut

Four mestranol moieties were chemically linked to Zn(II) phthalocyanine (4) by cycloaddition “Click” reaction using a tetra-azidoethoxy substituted Zn(II)-phthalocyanine (3). The alkyl-azido coupling reaction was realized between azido groups of 3 and alkyl group of mestranol. The alkylation reaction was carried out to obtain cationic Zn(II) phthalocyanine derivative (5). The new compounds were chemically characterized by the known analytical methods. The absorption and fluorescence properties were studied in comparison. The absorption maxima of phthalocyanines 3, 4 and 5 were recorded at approx. shifts of 8 - 12 nm in the far- red region (680 - 684 nm) and the fluorescence maxima (692 - 693 nm) as compared to unsubstituted ZnPc (672 nm, 680 nm) in DMSO. The studies of singlet oxygen generation of 3, 4 and 5 showed relatively high values such as 0.52 for 3; 0.51 for 4 and 0.46 for 5. The fluorescence lifetime of 3.15 ns (3), 3.25 ns (4) and 3.46 ns (5) were determined with lower than the value than for the used standard ZnPc (3.99 ns). The high photo stability was observed for compounds 3, 4 and 5. In addition, the photosensitized oxidation of cholesterol was compared for 3 and 4 with much lower values of oxidation potential than for unsubstituted ZnPc which suggests that the substitution groups influenced on the photooxidation index of the target molecule.

2020 ◽  
Vol 16 (6) ◽  
pp. 761-773
Author(s):  
Huda K. Mahmoud ◽  
Hanadi A. Katouah ◽  
Marwa F. Harras ◽  
Thoraya A. Farghaly

Background: One of the most successful reagents used in the synthesis of the reactive enaminone is DMF-DMA, but it is very expensive with harmful effects on the human health and reacts with special compounds to generate the enaminone such as active methylene centers. Aim: In this article, we synthesized a new ketenaminal by simple method with inexpensive reagents (through desulfurization in diphenylether). Methods: Thus, a novel reactive ketenaminal (enaminone) was synthesized from the desulfurization of 2-((2-(4-chlorophenyl)-2-oxoethyl)thio)-5,7-bis(4-methoxyphenyl)pyrido[2,3-d]pyrimidin- 4(3H)-one with diphenylether. The starting keteneaminal was coupled with diazotized anilines via the known coupling conditions to give a new series of 2-(4-chlorophenyl)-1-(2-(arylhydrazono)-2- oxoethyl)-5,7-bis(4-methoxy-phenyl)pyrido[2,3-d]pyrimidin-4(1H)-ones. Results: The structures of the new compounds were elucidated based on their IR, 1H-NMR, 13CNMR, and Mass spectra. Moreover, the potency of these compounds as antimicrobial agents has been evaluated. The results showed that some of the products have high activity nearly equal to that of the used standard antibiotic. Additionally, the docking study was done to get the binding mode of the synthesized compounds with the binding site of the DHFR enzyme. The results of molecular docking of the synthesized arylhydrazono compounds are able to fit in DHFR binding site with binding energies ranging from -4.989 to -8.178 Kcal/mol. Conclusion: Our goal was achieved in this context by the synthesis of new ketenaminal from inexpensive reagents, which was utilized in the preparation of bioactive arylhydrazone derivatives.


Molbank ◽  
10.3390/m1238 ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. M1238
Author(s):  
Ion Burcă ◽  
Valentin Badea ◽  
Calin Deleanu ◽  
Vasile-Nicolae Bercean

A new azo compound was prepared via the azo coupling reaction between 4-(ethoxycarbonyl)-3-methyl-1H-pyrazole-5-diazonium chloride and 8-hydroxyquinoline (oxine). The ester functional group of the obtained compound was hydrolyzed and thus a new chemical structure with a carboxylic functional group resulted. The structures of the new compounds were fully characterized by: UV–Vis, FT-IR, 1D and 2D NMR spectroscopy, and HRMS spectrometry.


2021 ◽  
Author(s):  
Esra Tanrıverdi Eçik ◽  
Onur BULUT ◽  
Hasan Hüseyin Kazan ◽  
Elif Şenkuytu ◽  
Bunyemin Cosut

Photodynamic therapy (PDT) is a promising strategy in cancer treatment with its relatively lower side effect profile. Undoubtedly, the key component of PDT is the photosensitizers with a high ability...


2021 ◽  
Author(s):  
Ya-Fang Xiao ◽  
Jia-Xiong Chen ◽  
Wen-Cheng Chen ◽  
Xiuli Zheng ◽  
Chen Cao ◽  
...  

Applying the heavy-atom effect to TADF photosensitizers achieves ultra-high 1O2 generation (ФΔ = 0.91) by the synergetic effect of small ΔEST and considerable SOC.


Author(s):  
Jiaxin Shen ◽  
Dandan Chen ◽  
Ye Liu ◽  
Guoyang Gao ◽  
Zhihe Liu ◽  
...  

Photodynamic therapy (PDT) is a promising method for cancer therapy and also may initiate unexpected damages to normal cells and tissues. Herein, we developed a near-infrared (NIR) light-activatable nanophotosensitizer, which...


ChemSusChem ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 682-687 ◽  
Author(s):  
Kailun Gu ◽  
Yu Wang ◽  
Jianhua Shen ◽  
Jingrun Zhu ◽  
Yihua Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document