scholarly journals Pigeonpea sterility mosaic virus a green plague-Current status of available drug and new potential targets

2021 ◽  
Vol 5 (1) ◽  
pp. 008-026
Singh Nisha ◽  
Narula Bhawna ◽  
Ujinwal Megha ◽  
Langyan Sapna

Pigeonpea is one of the important legume crops with high protein content and nutritional traits. It has enormous potency for its widespread adoption by farming communities. It is affected by various kinds of biotic and abiotic stresses. In the context, of biotic stresses Sterility mosaic disease (SMD) is one of the severe diseases in pigeonpea which ultimately lead to the drastic yield loss. The virus belongs to the genus Emaravirus, family- Fimoviridae. SMD is associated with two diverse types of Emaravirus, Pigeonpea sterility mosaic virus1 (PPSMV-1) and Pigeonpea sterility mosaic virus 2 (PPSMV-2). It is transmitted by the mite (Aceria cajani), mainly environmental contributing to the feasibility for the mites for the inoculation of the virus. The SMD is mainly governed by two genes SV1 that includes the dominant allele and serves as an inhibitory action on the resistance of the SV2. Methods for identification of the virus include RT-PCR, DIBA and ELISA using alkaline phosphatase or penicillinase. To control SMV disease farmers generally adopted intercropping methods. There are few potential drugs have been identified for the administration of the disease such as 0.1% Fenazaquin, Dicofol, Imidacloripid, Carbosulfan; Spiromesifin includes the inhibition of the mite inoculation on the pigeonpea plant. The present review describes compressive and systematic insights on SMV protein targets and potential drugs that could be utilized as the presumed drug targets for the finding of true drugs against the SMD in pigeonpea.

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 415
Wensen Shi ◽  
Rundong Yao ◽  
Runze Sunwu ◽  
Kui Huang ◽  
Zhibin Liu ◽  

Apple mosaic disease has a great influence on apple production. In this study, an investigation into the incidence of apple mosaic disease in southwest China was performed, and the pathogen associated with the disease was detected. The results show that 2869 apple trees with mosaic disease were found in the Sichuan, Yunnan, and Guizhou Provinces, with an average incidence of 9.6%. Although apple mosaic virus (ApMV) is widespread in apples worldwide, the diseased samples were negative when tested for ApMV. However, a novel ilarvirus (apple necrotic mosaic virus, ApNMV) was identified in mosaic apple leaves which tested negative for ApMV. RT-PCR analysis indicated that ApNMV was detected in 322 out of 357 samples with mosaic symptoms. Phylogenetic analysis of coat protein (CP) sequences of ApNMV isolates suggested that, compared with ApMV, ApNMV was closer to prunus necrotic ringspot virus (PNRSV). The CP sequences of the isolates showed the diversity of ApNMV, which may enable the virus to adapt to the changeable environments. In addition, the pathology of mosaic disease was observed by microscope, and the result showed that the arrangement of the tissue and the shape of the cell, including the organelle, were seriously destroyed or drastically changed.

Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2713-2719 ◽  
Fei Xing ◽  
Wanying Hou ◽  
Sebastien Massart ◽  
Dehang Gao ◽  
Wenhui Li ◽  

Apple mosaic disease is widespread in the major apple-producing areas in China and is frequently associated with the presence of the newly identified Apple necrotic mosaic virus (ApNMV), belonging to subgroup 3 of Ilarvirus genus in the family of Bromoviridae. Mosaic symptoms were also observed in a hawthorn tree. Deep sequencing revealed the hawthorn tree with mosaic symptom was infected by ApNMV, which was confirmed by RT-PCR. The complete nucleotide sequences of RNA1 (3,378 nt), RNA2 (2,778 nt), and RNA3 (1,917 nt) of ApNMV from the hawthorn were obtained, sharing 93.8 to 96.8%, 89.7 to 96.1%, and 89.8 to 94.6% nucleotide identities with those from apples and crabapples, respectively. Two hypervariable regions were found, which showed 59.2 to 85.7% and 64.0 to 89.3% sequence identities at position 142 to 198 aa and at position 780 to 864 aa in the POL protein, respectively, between the hawthorn isolate and other isolates (apple, crabapple). A grafting test demonstrated that ApNMV was easily transmissible from hawthorns to apple trees, with severe chlorosis, yellowing, mosaic, curling, and necrosis. In addition, a total of 11,685 hawthorn trees were surveyed for the incidence of mosaic disease from five provinces in China, and only six were found showing typical mosaic symptoms. A total of 145 individual trees (six symptomatic, 68 asymptomatic, and 71 other symptoms) were tested for the presence or absence of ApNMV by RT-PCR. Among them, six symptomatic, four asymptomatic, and 10 other symptomatic trees tested positive for ApNMV. Taken together, these results demonstrated that the hawthorn tree was identified as a new natural host for ApNMV with a relatively low frequency (13.8%, 20 out of 145) in the main producing areas, and it was likely to be the causal pathogen of hawthorn mosaic disease.

2020 ◽  
Vol 73 (4) ◽  
pp. 741-750
B. R. Sayiprathap ◽  
A. K. Patibanda ◽  
V. Prasanna Kumari ◽  
K. Jayalalitha ◽  
V. Srinivasa Rao ◽  

2009 ◽  
Vol 99 (1) ◽  
pp. 38-49 ◽  
M. F. Perera ◽  
M. P. Filippone ◽  
C. J. Ramallo ◽  
M. I. Cuenya ◽  
M. L. García ◽  

Sugarcane leaves with mosaic symptoms were collected in 2006–07 in Tucumán (Argentina) and analyzed by reverse-transcriptase polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) and sequencing of a fragment of the Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) coat protein (CP) genes. SCMV was detected in 96.6% of samples, with 41% showing the RFLP profile consistent with strain E. The remaining samples produced eight different profiles that did not match other known strains. SCMV distribution seemed to be more related to sugarcane genotype than to geographical origin, and sequence analyses of CP genes showed a greater genetic diversity compared with other studies. SrMV was detected in 63.2% of samples and most of these were also infected by SCMV, indicating that, unlike other countries and other Argentinean provinces, where high levels of co-infection are infrequent, co-existence is common in Tucumán. RFLP analysis showed the presence of SrMV strains M (68%) and I (14%), while co-infection between M and H strains was present in 18% of samples. Other SCMV subgroup members and the Sugarcane streak mosaic virus (SCSMV) were not detected. Our results also showed that sequencing is currently the only reliable method to assess SCMV and SrMV genetic diversity, because RT-PCR-RFLP may not be sufficiently discriminating.

Plant Disease ◽  
2021 ◽  
Qiang Gao ◽  
Hai-long Ren ◽  
Wanyu Xiao ◽  
Yan Zhang ◽  
Bo Zhou ◽  

Cucumis metuliferus, also called horned cucumber or jelly melon, is considered as a wild species in the Cucumis genus and a potential material for nematodes- or viruses-resistant breeding (Provvidenti, et al. 1977; Sigüenza et al. 2005; Chen et al. 2020). This species, originating from Africa, has been cultivated as a fruit in China in recent years. In July 2020, a mosaic disease was observed on C. metuliferus growing in five fields (approximately 0.7 hectare) in Urumqi, Xijiang, China, where more than 85~100% of the field plants exhibited moderate to severe viral disease-like leaf mosaic and/or deformation symptoms. Delayed flowering and small and/or deformed fruits on the affected plants could result in yield loss of about 50%. To identify the causal pathogen, the symptomatic leaf samples were collected from the five fields (five plants/points for each field) and their total RNAs were extracted using a commercial RNA extraction kit. The universal potyviral primers (Ha et al. 2008) and specific primers for a number of frequently-occurring, cucurbit crop-infecting viruses including Papaya ringspot virus (PRSV) (Lin et al. 2013), Cucumber mosaic virus (CMV) and Watermelon mosaic virus (WMV) were designed and used for detection by RT-PCR. The result showed that only the WMV primers (forward: 5’-AAGTGTGACCAAGCTTGGACTGCA-3’ and reverse: 5’-CTCACCCATTGTGCCAAAGAACGT-3’) could amplify the corresponding target fragment from the total RNA templates, and direct sequencing of the RT-PCR products and GenBank BLAST confirmed the presence of WMV (genus Potyvirus) in the collected C. metuliferus samples. To complete Koch’s postulates, the infected C. metuliferus leaves were ground in the sodium phosphate buffer (0.01 M, pH 7.0) and the sap was mechanically inoculated onto 30 four-leaf-stage C. metuliferus seedlings (two leaves for each seedling were inoculated) kept in an insect-proof, temperature-controlled greenhouse at 25~28℃. Twenty-five of the inoculated plants were observed to have apparent leaf mosaic similar to the field symptoms two weeks after inoculation, and positive result was obtained in RT-PCR detection for the symptomatic leaves of inoculated plants using the WMV primers aforementioned, confirming the virus as the pathogen of C. metuliferus in Urumqi. To our knowledge, this is the first report of WMV naturally infecting C. metuliferus in China. We obtained the full-length sequence of the WMV Urumqi isolation (WMV-Urumqi) by sequencing the RT-PCR amplicons from seven pairs of primers spanning the viral genome and the 5’RACE and 3’RACE products. The complete sequence of WMV-Urumqi (GenBank accession no. MW345911) is 10046 nucleotides (nt) long and contains an open reading frame that encodes a polyprotein of 3220 amino acids (aa). WMV-Urumqi shares the highest nt identity (95.9%) and aa identity (98.0%) with the Cucurbita pepo-infecting isolation (KX664483) from Shanxi province, China. Our findings provide a better understanding of the host range and genetic diversity of WMV, and a useful reference for virus-resistant breeding involving C. metuliferus.

Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 171-171 ◽  
S. K. Raj ◽  
S. Kumar ◽  
S. K. Snehi ◽  
U. Pathre

Jatropha curcas L. is a major commercial biodiesel fuel crop grown on 98 million acres (39.66 million ha) in India. Severe mosaic disease accompanied by yellow spots was noticed on 15% of J. curcas growing in the experimental plots of NBRI, Lucknow, India, during October of 2006. Inoculations with sap from symptomatic plants resulted in systemic mosaic on three of seven J. curcas seedlings. Gel diffusion tests were performed with antiserum to Cucumber mosaic virus (CMV), Tobacco ringspot virus, and Chrysanthemum virus B (PVAS-242a, PVAS-157, and PVAS-349, respectively; ATCC, Manassas, VA). Leaf sap of infected plants reacted only with PVAS-242a, indicating the presence of CMV. Reverse transcription (RT)-PCR assays with CMV coat protein gene specific primers (Genbank Accession Nos. AM180922 and AM180923) and total nucleic acid extracted from symptomatic J. curcas leaf tissue yielded the expected ~650-bp amplicon, which was cloned and sequenced (GenBank Accession No. EF153739). BLAST analysis indicated 98 to 99% nucleotide identity with CMV isolates (GenBank Accession Nos. DQ914877, DQ640743, AF350450, AF281864, X89652, AF198622, DQ152254, DQ141675, and DQ028777). Phylogenetic analysis showed that the J. curcas isolate was more closely related to Indian isolates of CMV belonging to subgroup Ib. Literature surveys revealed records of Jatropha mosaic virus on J. gossypiifolia in Puerto Rico (1) and on J. curcas in India (2). To our knowledge, this is the first report of CMV on J. curcas. References: (1) J. K. Brown et al. Arch. Virol. 146:1581, 2001. (2) D. S. A. Narayana et al. Curr. Sci. 91:584, 2006.

2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.

2021 ◽  
Vol 10 (1) ◽  
pp. 456-475
Efat Zohra ◽  
Muhammad Ikram ◽  
Ahmad A. Omar ◽  
Mujahid Hussain ◽  
Seema Hassan Satti ◽  

Abstract In the present era, due to the increasing incidence of environmental stresses worldwide, the developmental growth and production of agriculture crops may be restrained. Selenium nanoparticles (SeNPs) have precedence over other nanoparticles because of the significant role of selenium in activating the defense system of plants. In addition to beneficial microorganisms, the use of biogenic SeNPs is known as an environmentally friendly and ecologically biocompatible approach to enhance crop production by alleviating biotic and abiotic stresses. This review provides the latest development in the green synthesis of SeNPs by using the results of plant secondary metabolites in the biogenesis of nanoparticles of different shapes and sizes with unique morphologies. Unfortunately, green synthesized SeNPs failed to achieve significant attention in the agriculture sector. However, research studies were performed to explore the application potential of plant-based SeNPs in alleviating drought, salinity, heavy metal, heat stresses, and bacterial and fungal diseases in plants. This review also explains the mechanistic actions that the biogenic SeNPs acquire to alleviate biotic and abiotic stresses in plants. In this review article, the future research that needs to use plant-mediated SeNPs under the conditions of abiotic and biotic stresses are also highlighted.

2021 ◽  
Vol 18 (1) ◽  
Saengsoon Charoenvilaisiri ◽  
Channarong Seepiban ◽  
Mallika Kumpoosiri ◽  
Sombat Rukpratanporn ◽  
Nuchnard Warin ◽  

Abstract Background Cassava mosaic disease (CMD) is one of the most devastating viral diseases for cassava production in Africa and Asia. Accurate yet affordable diagnostics are one of the fundamental tools supporting successful CMD management, especially in developing countries. This study aimed to develop an antibody-based immunoassay for the detection of Sri Lankan cassava mosaic virus (SLCMV), the only cassava mosaic begomovirus currently causing CMD outbreaks in Southeast Asia (SEA). Methods Monoclonal antibodies (MAbs) against the recombinant coat protein of SLCMV were generated using hybridoma technology. MAbs were characterized and used to develop a triple antibody sandwich enzyme-linked immunosorbent assay (TAS-ELISA) for SLCMV detection in cassava leaves and stems. Assay specificity, sensitivity and efficiency for SLCMV detection was investigated and compared to those of a commercial ELISA test kit and PCR, the gold standard. Results A TAS-ELISA for SLCMV detection was successfully developed using the newly established MAb 29B3 and an in-house polyclonal antibody (PAb) against begomoviruses, PAb PK. The assay was able to detect SLCMV in leaves, green bark from cassava stem tips, and young leaf sprouts from stem cuttings of SLCMV-infected cassava plants without cross-reactivity to those derived from healthy cassava controls. Sensitivity comparison using serial dilutions of SLCMV-infected cassava sap extracts revealed that the assay was 256-fold more sensitive than a commercial TAS-ELISA kit and 64-fold less sensitive than PCR using previously published SLCMV-specific primers. In terms of DNA content, our assay demonstrated a limit of detection of 2.21 to 4.08 × 106 virus copies as determined by quantitative real-time PCR (qPCR). When applied to field samples (n = 490), the TAS-ELISA showed high accuracy (99.6%), specificity (100%), and sensitivity (98.2%) relative to the results obtained by the reference PCR. SLCMV infecting chaya (Cnidoscolus aconitifolius) and coral plant (Jatropha multifida) was also reported for the first time in SEA. Conclusions Our findings suggest that the TAS-ELISA for SLCMV detection developed in this study can serve as an attractive tool for efficient, inexpensive and high-throughput detection of SLCMV and can be applied to CMD screening of cassava stem cuttings, large-scale surveillance, and screening for resistance.

Sign in / Sign up

Export Citation Format

Share Document