scholarly journals Shape and volume optimization of industrial parts

2022 ◽  
Vol 10 (1) ◽  
pp. 058-064
Author(s):  
Juraj Beniak ◽  
Miloš Matúš ◽  
Ľubomír Šooš ◽  
Peter Križan

In the present time, there are many challenges in the production of industrial parts. Due to the constantly rising prices of materials and energy, it is necessary to constantly look for ways to optimize production costs and optimize material consumption. There is great pressure on economical production, i. to produce products with the lowest costs given the expected and necessary properties. With the introduction of additive manufacturing technologies into practice and the production of parts for end use comes the introduction of methods for optimizing the shape of the part and the required amount of material for its production. We call this method Topological Optimization. The presented article describes the preparation of topologically optimized parts and a comparison of their strength properties with respect to the original and the original part.

2020 ◽  
Vol 10 (3) ◽  
pp. 735 ◽  
Author(s):  
Justyna Patalas-Maliszewska ◽  
Marcin Topczak ◽  
Sławomir Kłos

(1) Background: Products, manufactured using additive manufacturing technologies (AM) are increasingly present on the market. The research was undertaken to determine the possibilities of increasing the use of AM technology in Polish manufacturing companies. The aim of the paper is to determinate the level of the AM technology use of Polish Metal and Automotive Manufacturing and the influence of AM technology use on the increase of manufacturing company’s competitiveness–in the context of Polish Manufacturing Companies. (2) Methods: This paper uses literature studies to determinate the AM technology used within the production processes in the automotive and metal industry companies (so called dimensions) and a questionnaire survey, which was carried out on a sample of 250 Polish Metal and Automotive Manufacturing Enterprises. (3) Results: The results were verified by a statistical analysis, using correlation coefficients. Based on the data obtained, it was determined that both metal and automotive Polish companies use, or have in their investment plans, the implementation of AM technology, due to the need to reduce production costs and increase speed and flexibility when responding to customer needs. Moreover, the relationship between applied additive manufacturing technologies and the effects of their use, in enterprises, was analysed. The novelty of our work is defining the dimensions of the AM technology use for our empirical research and determining the influence of AM technology use on the increase Polish manufacturing company’s competitiveness. (4) Conclusions: The possibilities of using the results of research in economic practice were demonstrated. We also highlighted the impracticality for managers to support the selection and implementation of AM technology in the context of obtaining possible benefits for a manufacturing company.


Author(s):  
Tuomas Puttonen

Abstract Additive manufacturing (AM) has during the 21st century gradually shifted from prototyping towards the manufacture of end-use quality parts. The drivers to utilize AM instead of conventional manufacturing methods are often linked to geometrical design freedom, increased performance, customization, part consolidation, and weight reduction. However, designers have struggled to take full advantage of these new capabilities. In part, this is due to a pervasive engineering mindset locked into the constraints of conventional manufacturing technologies. Another reason is the lack of efficient design methodologies that would take into account the new capabilities of AM. In this paper, to address the latter deficiency, an assembly redesign process for AM is deconstructed and analyzed. The studied assembly is an elevator accessibility button, which is a high-mix low-volume product. From the industry perspective, AM could reduce costs and increase the agility of production. Through systematic requirements mapping, part- and product-level functional analysis, a holistic functional analysis of the product is composed. The results of the product functional analysis are illustrated in a visual 3D design space. The 3D illustration is suggested as a conceptualization tool for the designers and as a way to reinforce creativity in the design process. The usability and expandability of the tool are discussed and contrasted with the current design methodologies for AM.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1429 ◽  
Author(s):  
Joaquim Minguella-Canela ◽  
Sergio Morales Planas ◽  
Joan Gomà Ayats ◽  
M. de los Santos López

Additive manufacturing (AM) technologies are appropriate manufacturing technologies to produce low rotation products of high added value. Products in the spare parts business usually have discontinuous demand levels of reduced numbers of parts. Indeed, spare parts inventories handle myriad of products that require big immobilized investments while having an intrinsic risk of no-use (for example due to obsolescence or spoilage). Based on these issues, the present work analyses the fundamental cost factors in a real case study of a company dedicated to the supply of spare parts for fluid conduction systems. Real inventory data is assessed to determine the product taxonomy and its associated costs. A representative product of the stock is analyzed in detail on original manufacturing costs, in AM costs and then redesigned with topological optimization to reduce the AM cost levels (via design for additive manufacturing). A general equation for cost assessment is formulated. Given the specific data collected from the company, the parameters in this general equation are calculated. Finally, the general equation and the product cost reduction achieved are used to explore the potential economic impact of the use of AM technologies in the cost levels of manufacturing and stocking of spare part products.


2012 ◽  
Vol 95 (3) ◽  
pp. 255-282 ◽  
Author(s):  
Timothy J. Horn ◽  
Ola L. A. Harrysson

Three-dimensional printing or rapid prototyping are processes by which components are fabricated directly from computer models by selectively curing, depositing or consolidating materials in successive layers. These technologies have traditionally been limited to the fabrication of models suitable for product visualization but, over the past decade, have quickly developed into a new paradigm called additive manufacturing. We are now beginning to see additive manufacturing used for the fabrication of a range of functional end use components. In this review, we briefly discuss the evolution of additive manufacturing from its roots in accelerating product development to its proliferation into a variety of fields. Here, we focus on some of the key technologies that are advancing additive manufacturing and present some state of the art applications.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1036
Author(s):  
Daniel Moreno Nieto ◽  
María Alonso-García ◽  
Miguel-Angel Pardo-Vicente ◽  
Lucía Rodríguez-Parada

Additive manufacturing technologies are shifting from rapid prototyping technologies to end use or final parts production. Polymeric material extrusion processes have been broadly addressed with a specific definition of all parameters and variables for all different of technologies approaches and materials. Recycled polymeric materials have been studied due to the growing importance of the environmental awareness of the contemporary society. Beside this, little specific research has been found in product development applications for AM where the printed parts are in highly moisture environments or surrounded by water, but polymers have been for long used in such industries with conventional manufacturing approaches. This work focuses on the analysis and comparison of two different additively manufactured polymers printed by fused filament fabrication (FFF) processes using desktop-size printers to be applied for product design. The polymers used have been a recycled material: polyethylene terephthalate glycol (PETG) and polylactic acid (PLA). Degradation and water absorption behaviors of both materials are presented, analyzed and discussed in this paper, where different samples have been immersed in saturated solutions of water with maritime salt and sugar together with a control sample immersed in distilled water. The samples have been dimensionally and weight-controlled weekly as well as microscopically analyzed to understand degradation and absorption processes that appear in the fully saturated solutions. The results revealed how the absorption process is stabilized after a reduced number of weeks for both materials and how the degradation process is more remarked in the PLA material due to its organic nature.


2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3888
Author(s):  
Johanna Maier ◽  
Christian Vogel ◽  
Tobias Lebelt ◽  
Vinzenz Geske ◽  
Thomas Behnisch ◽  
...  

Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.


2021 ◽  
Vol 1 ◽  
pp. 2127-2136
Author(s):  
Olivia Borgue ◽  
John Stavridis ◽  
Tomas Vannucci ◽  
Panagiotis Stavropoulos ◽  
Harry Bikas ◽  
...  

AbstractAdditive manufacturing (AM) is a versatile technology that could add flexibility in manufacturing processes, whether implemented alone or along other technologies. This technology enables on-demand production and decentralized production networks, as production facilities can be located around the world to manufacture products closer to the final consumer (decentralized manufacturing). However, the wide adoption of additive manufacturing technologies is hindered by the lack of experience on its implementation, the lack of repeatability among different manufacturers and a lack of integrated production systems. The later, hinders the traceability and quality assurance of printed components and limits the understanding and data generation of the AM processes and parameters. In this article, a design strategy is proposed to integrate the different phases of the development process into a model-based design platform for decentralized manufacturing. This platform is aimed at facilitating data traceability and product repeatability among different AM machines. The strategy is illustrated with a case study where a car steering knuckle is manufactured in three different facilities in Sweden and Italy.


Sign in / Sign up

Export Citation Format

Share Document