scholarly journals Feature Selection Approach to Detect DDoS Attack Using Machine Learning Algorithms

2021 ◽  
Vol 5 (4) ◽  
pp. 395
Author(s):  
Muhammad Aqil Haqeemi Azmi ◽  
Cik Feresa Mohd Foozy ◽  
Khairul Amin Mohamad Sukri ◽  
Nurul Azma Abdullah ◽  
Isredza Rahmi A. Hamid ◽  
...  

Distributed Denial of Service (DDoS) attacks are dangerous attacks that can cause disruption to server, system or application layer. It will flood the target server with the amount of Internet traffic that the server could not afford at one time. Therefore, it is possible that the server will not work if it is affected by this DDoS attack. Due to this attack, the network security environment becomes insecure with the possibility of this attack. In recent years, the cases related to DDoS attacks have increased. Although previously there has been a lot of research on DDoS attacks, cases of DDoS attacks still exist. Therefore, the research on feature selection approach has been done in effort to detect the DDoS attacks by using machine learning techniques. In this paper, to detect DDoS attacks, features have been selected from the UNSW-NB 15 dataset by using Information Gain and Data Reduction method. To classify the selected features, ANN, Naïve Bayes, and Decision Table algorithms were used to test the dataset. To evaluate the result of the experiment, the parameters of Accuracy, Precision, True Positive and False Positive evaluated the results and classed the data into attacks and normal class. Hence, the good features have been obtained based on the experiments. To ensure the selected features are good or not, the results of classification have been compared with the past research that used the same UNSW-NB 15 dataset. To conclude, the accuracy of ANN, Naïve Bayes and Decision Table classifiers has been increased by using this feature selection approach compared to the past research.

2020 ◽  
Vol 10 (22) ◽  
pp. 8093
Author(s):  
Jun Wang ◽  
Yuanyuan Xu ◽  
Hengpeng Xu ◽  
Zhe Sun ◽  
Zhenglu Yang ◽  
...  

Feature selection has devoted a consistently great amount of effort to dimension reduction for various machine learning tasks. Existing feature selection models focus on selecting the most discriminative features for learning targets. However, this strategy is weak in handling two kinds of features, that is, the irrelevant and redundant ones, which are collectively referred to as noisy features. These features may hamper the construction of optimal low-dimensional subspaces and compromise the learning performance of downstream tasks. In this study, we propose a novel multi-label feature selection approach by embedding label correlations (dubbed ELC) to address these issues. Particularly, we extract label correlations for reliable label space structures and employ them to steer feature selection. In this way, label and feature spaces can be expected to be consistent and noisy features can be effectively eliminated. An extensive experimental evaluation on public benchmarks validated the superiority of ELC.


Malware is a serious threat to individuals and users. The security researchers present various solutions, striving to achieve efficient malware detection. Malware attackers devise detection avoidance techniques to escape from detection systems. The key challenge is that growth of malware increases every hour, leading to large damages to users’ privacy. The training process takes much longer time, mining the unnecessary features. Feature Selection is effective in achieving unique feature set in detecting malware. In this paper, we propose a malware detection system using hybrid feature selection approach to detect malware efficiently with a reduced feature set. Machine learning based classification is performed on eight classifiers with two malware datasets. The experiments were done without and with feature selection. The empirical results show that the classification using selected feature set and XGB classifier identifies malware efficiently with an accuracy of 98.9% and 99.26% for the two datasets.


Sign in / Sign up

Export Citation Format

Share Document