scholarly journals The Application of Data Mining in Determining Timely Graduation Using the C45 Algorithm

Author(s):  
Asro Pradipta ◽  
Dedy Hartama ◽  
Anjar Wanto ◽  
Saifullah Saifullah ◽  
Jalaluddin Jalaluddin

Graduating on time is one element of higher education accreditation assessment. In the Strata 1 level, students are declared to graduate on time if they can complete their studies <= eight semesters or four years. BAN-PT sets a timely graduation standard of >= 50%. If the standard is not met, it will reduce the value of accreditation. These problems encourage the Universitas Simalungun Pematangsiantar to conduct evaluations and strategic steps in an effort to increase student graduation rates so that the targets of BAN-PT can be achieved. For this reason it is necessary to know in advance the pattern of students who tend not to graduate on time. In this study, C4.5 Algorithm is proposed to predict student graduation. This algorithm will process student profile datasets totaling 150 data. This dataset has a graduation status label. The value of the label is categorical, that is, right and late. The features or attributes used, namely the name of the student, gender, student status, GPA. The results of the C4.5 algorithm are in the form of a decision tree model that is very easy to analyze. In fact, even by ordinary people. This model will map the patterns of students who have the potential to graduate on time and late.

2021 ◽  
Vol 5 (2) ◽  
pp. 556
Author(s):  
Firman Syahputra ◽  
Hartono Hartono ◽  
Rika Rosnelly

This study aims to provide an evaluation of the availability of money in ATM machines using data mining. Data mining with the C4.5 algorithm is used to predict cash demand or total cash withdrawals at ATMs. To determine the need for ATM cash based on cash transaction data. It is hoped that this forecasting can help the monitoring department in making decisions about the money requirements that must be allocated to each ATM machine. The results of this study are expected to assist the ATM management unit in optimizing and monitoring the availability of money at an ATM machine for cash needs, so that it can provide optimal service to customers. Algortima C4.5 is an algorithm that is able to form a decision tree, where the decision tree will then generate new knowledge. The results of the test matched the data on the availability of money at the ATM machine. The results of implementing the C4.5 method on the availability of money at the ATM machine are seen from the travel time to the ATM location and also the remaining balance in the machine. The resulting decision tree model is to make the balance variable as the root, then the travel time as a branch at Level 1 with the variables fast, medium, long, and the bank becomes a branch at the last level (Level 2). Then the C4.5 algorithm was tested using the K-Fold Cross validation method with the value of fold = 10, it can be seen that the accuracy rate is 85%, the Precision value is 80% and the Recall value is 66.67%. While the AUC (Area Under Curve) value is 0.833, this shows that if the AUC value approaches the value 1, the accuracy level is getting better


2020 ◽  
Vol 7 (2) ◽  
pp. 200
Author(s):  
Puji Santoso ◽  
Rudy Setiawan

One of the tasks in the field of marketing finance is to analyze customer data to find out which customers have the potential to do credit again. The method used to analyze customer data is by classifying all customers who have completed their credit installments into marketing targets, so this method causes high operational marketing costs. Therefore this research was conducted to help solve the above problems by designing a data mining application that serves to predict the criteria of credit customers with the potential to lend (credit) to Mega Auto Finance. The Mega Auto finance Fund Section located in Kotim Regency is a place chosen by researchers as a case study, assuming the Mega Auto finance Fund Section has experienced the same problems as described above. Data mining techniques that are applied to the application built is a classification while the classification method used is the Decision Tree (decision tree). While the algorithm used as a decision tree forming algorithm is the C4.5 Algorithm. The data processed in this study is the installment data of Mega Auto finance loan customers in July 2018 in Microsoft Excel format. The results of this study are an application that can facilitate the Mega Auto finance Funds Section in obtaining credit marketing targets in the future


2021 ◽  
pp. 1-10
Author(s):  
Chao Dong ◽  
Yan Guo

The wide application of artificial intelligence technology in various fields has accelerated the pace of people exploring the hidden information behind large amounts of data. People hope to use data mining methods to conduct effective research on higher education management, and decision tree classification algorithm as a data analysis method in data mining technology, high-precision classification accuracy, intuitive decision results, and high generalization ability make it become a more ideal method of higher education management. Aiming at the sensitivity of data processing and decision tree classification to noisy data, this paper proposes corresponding improvements, and proposes a variable precision rough set attribute selection standard based on scale function, which considers both the weighted approximation accuracy and attribute value of the attribute. The number improves the anti-interference ability of noise data, reduces the bias in attribute selection, and improves the classification accuracy. At the same time, the suppression factor threshold, support and confidence are introduced in the tree pre-pruning process, which simplifies the tree structure. The comparative experiments on standard data sets show that the improved algorithm proposed in this paper is better than other decision tree algorithms and can effectively realize the differentiated classification of higher education management.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Teguh Budi Santoso ◽  
Dela Sekardiana

<p><em>Current credit giving in KOPERIA (Koperasi Warga Komplek Gandaria) is still based on an objective process. Difficulties in determining the feasibility of giving credit are often experienced by cooperative managers, so that problems arise in the cooperative is a default payment of credit installments of customers in KOPERIA. This study aims to form a decision tree classification model to determine the customer's credit worthiness. In this study the application of C4.5 Algorithm, based on the Sets and Attributes used in this study, namely, the amount of income divided into 2 categories&gt; 5 million and 3-5 million, the amount of balance divided into three, namely&gt; 3 million, 1-3 million and &lt;1 Million, The Loan Amount is divided into three, namely 1-4 Months, 5-8 months, and 9-12 Months and Requirements with attributes of Business Capital, buying goods and others. In this study determine the appropriate root nodes, the classification results using C4.5 Algorithm shows that the accuracy of 97.5% is obtained, based on the results obtained shows that the c4.5 algorithm is suitable to be used to determine the feasibility of lending customers to KOPERIA.</em></p><p><strong><em>Keywords</em></strong><em>: Data Mining, C4.5 Algorithm</em><em>, loan feasibility</em></p>


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Ni Luh Ratniasih

ABSTRACT<br />Presentation of data to produce information values is often displayed in the form of tabulations. If the data displayed has a small capacity, it may not be difficult to process the information. But if the data presented has a very large capacity, it is feared there are obstacles to absorbing information accurately and quickly. This is because that it takes a long time to read the data displayed in detail until the end of the data. The data to be discussed in this study are data of STMIK STIKOM Bali students. Historical data displayed will be converted into a decision tree. Thus the absorption of information will become easier. This research implements data mining disciplines using the naïve bayes method comparison with C4.5 algorithm which is a method for performing classification techniques and applied with Rapid Miner tools.<br />Keywords : C4.5, KNN, Student Graduation<br />ABSTRAK<br />Penyajian data untuk menghasilkan nilai informasi sering kali ditampilkan dalam bentuk tabulasi. Apabila data yang ditampilkan memiliki kapasitas kecil, mungkin tidak terlalu sulit untuk mencerna kandungan informasi tersebut. Tetapi apabila data yang disajikan memiliki kapasitas yang sangat besar, dikawatirkan adanya kendala untuk menyerap informasi secara tepat dan cepat. Hal ini dikarenakan bahwa dibutuhkan waktu yang cukup lama untuk membaca data yang ditampilkan secara rinci hingga akhir data. Data yang akan dibahas dalam penelitian ini adalah data mahasiswa STMIK STIKOM Bali. Data historis yang ditampilkan akan dikonversi menjadi bentuk pohon keputusan. Dengan demikian penyerapan informasi akan menjadi lebih mudah. Penelitian ini mengimplemen-tasikan disiplin ilmu data mining menggunakan komparasi metode naïve bayes dengan algoritma C4.5 yang merupakan sebuah metode untuk melakukan teknik klasifikasi serta diaplikasikan dengan tools Rapid Miner.<br />Kata kunci : C4.5, KNN, Kelulusan Mahasiswa


2020 ◽  
Vol 3 (1) ◽  
pp. 40-54
Author(s):  
Ikong Ifongki

Data mining is a series of processes to explore the added value of a data set in the form of knowledge that has not been known manually. The use of data mining techniques is expected to provide knowledge - knowledge that was previously hidden in the data warehouse, so that it becomes valuable information. C4.5 algorithm is a decision tree classification algorithm that is widely used because it has the main advantages of other algorithms. The advantages of the C4.5 algorithm can produce decision trees that are easily interpreted, have an acceptable level of accuracy, are efficient in handling discrete type attributes and can handle discrete and numeric type attributes. The output of the C4.5 algorithm is a decision tree like other classification techniques, a decision tree is a structure that can be used to divide a large data set into smaller sets of records by applying a series of decision rules, with each series of division members of the resulting set become similar to each other. In this case study what is discussed is the effect of coffee sales by processing 106 data from 1087 coffee sales data at PT. JPW Indonesia. Data samples taken will be calculated manually using Microsoft Excel and Rapidminer software. The results of the calculation of the C4.5 algorithm method show that the Quantity and Price attributes greatly affect coffee sales so that sales at PT. JPW Indonesia is still often unstable.


2016 ◽  
Vol 20 (3) ◽  
pp. 1 ◽  
Author(s):  
Rafael Isaac Estrada-Danell ◽  
Roman Alberto Zamarripa-Franco ◽  
Pilar Giselle Zúñiga-Garay ◽  
Isaías Martínez-Trejo

 This article aims to analyze how data mining (DM) optimizes the enrollment process, with the intention of designing a predictive model to manage private enrollment for higher education institutions of Mexico. It analyzes the current status of the higher education institutions in relation to its enrollment process and the application of the DM. With a correlational method, a dataset (DS) was used to model an entropy decision tree with the help of Rapid Miner software. The results show that it is possible to build and test a predictive model management of private enrollment for higher education institutions of Mexico as the ZAM&EST model proposed by the authors.


2012 ◽  
Vol 457-458 ◽  
pp. 754-757
Author(s):  
Hong Yan Zhao

The Decision Tree technology, which is the main technology of the Data Mining classification and forecast, is the classifying rule that infers the Decision Tree manifestation through group of out-of-orders, the non-rule examples. Based on the research background of The Decision Tree’s concept, the C4.5 Algorithm and the construction of The Decision Tree, the using of C4.5 Decision Tree Algorithm was applied to result analysis of students’ score for the purpose of improving the teaching quality.


Sign in / Sign up

Export Citation Format

Share Document