scholarly journals Workability dan Sifat Mekanik Self Compacting Geopolimer Concrete (SCGC)

Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 267
Author(s):  
Rita Hardianti Aris ◽  
Erniati Bachtiar ◽  
Ritnawati Makbul

The purpose of this study was to investigate the relationship between molarity and workability in Self-Compacting Geopolymer Concrete (SCGC), as well as mechanical properties. Compressive strength and split tensile strength tests are used to characterize the mechanical characteristics in this research. Additionally, the study investigates the optimal molarity for self-compacting geopolymer concrete. Fly ash was used in lieu of cement in this research. On new concrete self-compacting geopolymer, workability is determined using the EFNARC standard, which includes the Slump Flow, V-Funnel, and L-Box tests. ASTM 39/C 39M-99 standard is used to determine the compressive strength of self-compacting concrete geopolymer. On new concrete, workability is determined using the EFNARC standard, which comprises the Slump Flow Test, a V-funnel, and an L-Box. The compressive strength of concrete samples is determined according to the ASTM 39/C 39M – 99 standard. The SNI 03-2491-2002 standard is used to determine the split tensile strength of concrete. At the ages of 7, 14, and 28 days, tests were conducted. The findings indicated that new concrete at 11M-13M satisfied the criteria for SCGC workability. The compressive and split tensile strengths of SCGC grow as the concrete ages. In self-compacting geopolymer concrete, the optimal molarity is 13 M.

2020 ◽  
Vol 7 (3) ◽  
pp. 115-139
Author(s):  
Sarkawt Karim ◽  
◽  
Azad Mohammed ◽  

This study describes two workability tests, compressive strength and tensile strength tests of high strength flowable concrete containing plastic fiber prepared from polyethylene terephthalate (PET) waste bottles. For the high fluidity mix Vebe time and V-funnel time tests were carried out. Results show that there is a Vebe time increase with PET fiber addition to concrete being increased with increasing fiber volume and fiber length. V-funnel time was found to reduce when up to 0.75% fiber volume is added to concrete, followed by an increase for larger fiber volumes. When fiber length is increase, there is more time increase, but in general, V-funnel time increase was lower than that of Vebe time, indicating a different influence of PET fiber on the compatibility and flowability. The measured V-funnel time for all mixes was found to conform to the limits of European specifications on the flowability of self compacting concrete. Small descending in compressive strength was recorded for RPET fiber reinforced concrete that reached 15.74 % for 1.5 percent fiber content with 10 mm fiber length. Attractive results was recorded in split tensile strength of RPET fibrous samples which resulted in improvement up to 63.3 % for 1.5 percent of 40 mm fiber length content.


The present study appraises the recitals of carboxylic acid- based admixture to increase concrete water tightness and self-sealing capacity of the cement and geopolymer concrete. Outcomes of the previous studies in particular, adding 1% by cement mass of the carboxylic polymer reasons for reduction in the water dispersion under pressure of 7-day wet cured concrete by 50% associated to that of the conforming reference concrete. At 7 days, M4 mix compressive strength is about 43.5% less than M3 mix. The compressive strength of M4 increases and is about 37.6% less than M3 mix at 28 days of curing. At 7 days, M4 mix split tensile strength is about 17.5% less than M3 mix (cement concrete with 0.45 w/c ratio). The split tensile strength of M4 declines and is about 42.3% less than M3 mix at 28 days of curing. The strength of the geopolymer concrete tends to increase as the time period increases due to the presence of fly ash in it. So it is expected that geopolymer concrete will give more strength than cement concrete in long term with the presence of carboxylic acid


1985 ◽  
Vol 64 ◽  
Author(s):  
Parviz Soroushian ◽  
Ki-Bong Choi ◽  
Gung Fu

ABSTRACTResults of dynamic tensile strength tests of concrete, produced by the authors and other investigators, were used to study the effects of strain rate on the tensile strength of concrete. The influence of moisture content and compressive strength of concrete, and type of test (splitting tension, flexure, or direct tension) on the strain rate-sensitivity of the tensile strength were evaluated. An empirically developed expression is presented for the dynamic-to-static ratio of concrete tensile strength in terms of the rate of straining.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 544
Author(s):  
Justyna Czajkowska ◽  
Maciej Malarski ◽  
Joanna Witkowska-Dobrev ◽  
Marek Dohojda ◽  
Piotr Nowak

Contact of concrete with aggressive factors, technological structures, reduces their durability through microstructural changes. This work presents the results of research on determining the influence of post grit chamber sewage and sewage from the active sludge chamber in three different environments, i.e., acidic, neutral, and alkaline, on the structure and compressive strength of concrete. Compressive strength tests were carried out after 11.5 months of concrete cubes being submerged in the solutions and compared. To complete the studies, the photos of the microstructure were done. This made it possible to accentuate the relationship between the microstructure and performance characteristics of concrete. The time of storing the cubes in both acidic environments (sewage from post grit chamber and active sludge chamber) has a negative influence on their compressive strength. The compressive strength of cubes decreases along with the time. Compressive strength of cubes increases with increasing pH of the environment.


2011 ◽  
Vol 71-78 ◽  
pp. 1233-1236
Author(s):  
De Zhi Wang ◽  
Yun Fang Meng ◽  
Yin Yan Zhang

The split tensile strength and compressive strength of concrete mixed with SiO2and CaCO3nanoparticles have been experimentally studied. SiO2nanoparticles as a partial cement replaced by 0.5, 1.0, 2.0 and 3.0 wt.% and CaCO3nanoparticles by 1.0 and 3.0 wt.% were added partially to concrete. Curing of the specimens has been carried out for 7, 28, 78 and 128 days after casting. SiO2nanoparticle as a partial replacement of cement up to 3.0 wt.% could accelerate formation of CSH gel at the early ages and hence increase the split tensile strength and compressive strength. The optimal replacement level of cement by SiO2nanoparticles for producing concrete with improved strength was set at 2.0 wt.%. CaCO3nanoparticles as a partial replacement of cement up to 3.0 wt.% could consume crystalline Ca(OH)2and accelerate formation of calcium carboaluminate hydrate at the early ages and increase the split tensile strength and compressive strength. The optimal replacement level of cement by CaCO3nanoparticles for producing concrete with improved strength was set at 3.0 wt.%.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1651 ◽  
Author(s):  
Yifei Cui ◽  
Kaikai Gao ◽  
Peng Zhang

This paper studies the statistical correlation in mechanical characteristics of class F fly ash based geopolymer concrete (CFGPC). Experimentally measured values of the compressive strength, elastic modulus and indirect tensile strength of CFGPC specimens made from class F fly ash (CFA) were presented and analyzed. The results were compared with those of corresponding ordinary Portland cement concrete (OPCC) using statistical hypothesis tests. Results illustrated that when possessing similar compressive and tensile strength, the elastic modulus for CFGPC is significantly lower than that of OPCC. The corresponding expressions recommended by standards for the case of OPCC is proved to be inaccurate when applied in the case of CFGPC. Statistical regression was used to identify tendencies and correlations within the mechanical characteristics of CFGPC, as well as the empirical equations for predicting tensile strength and elastic modulus of CFGPC from its compressive strength values. In conclusion, CFGPC and OPCC has significant differences in terms of the correlations between mechanical properties. The empirical equations obtained in this study could provide relatively accurate predictions on the mechanical behavior of CFGPC.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 264
Author(s):  
G J. Prasannaa Venkatesh ◽  
S S.Vivek ◽  
G Dhinakaran

Self-compacting concrete (SCC) is the flowable concrete which tends to fill the formwork under its weight without external compaction. In the present research, 9 different SCC mixes in binary blend along with control SCC and conventional vibrated concrete (CVC) mixes were developed. In binary combination, cement was partially replaced by SF from 7 to 21%, MK from 10 to 30% and GGBS from 20 to 60%. For the above 9 combinations of SCC mixes, the basic rheological properties test namely slump flow and T500 were carried out in the fresh state of SCC. The flowability was achieved using Superplasticizer and viscosity modifying admixture (VMA), added by the percentage of the weight of cement. In hardened state, the compressive strength of the cube specimens and the split tensile strength of the cylinder specimens were carried out.  


2021 ◽  
Author(s):  
M. Indhumathi Anbarasan ◽  
S.R. Sanjaiyan ◽  
S. Nagan Soundarapandiyan

Geopolymer concrete (GPC) has significant potential as a more sustainable alternative for ordinary Portland cement concrete. GPC had been introduced to reduce carbon footprints and thereby safeguarding environment. This emerging eco friendly construction product finds majority of its application in precast and prefabricated structures due to the special curing conditions required. Sustained research efforts are being taken to make the product suitable for in situ applications. The developed technology will certainly address the issues of huge energy consumption as well reduce water use which is becoming scarce nowadays. Ground Granulated Blast Furnace Slag (GGBS) a by-product of iron industries in combination with fly ash has proved to give enhanced strength, durability as well reduced setting time. This study investigates the effect of GGBS as partial replacement of fly ash in the manufacture of GPC. Cube and cylindrical specimens were cast and subjected to ambient curing as well to alternate wetting-drying cycles. The 28 day compressive strength, split tensile strength, flexural strength and density of GPC specimens were found. The study revealed increase in compressive strength, split tensile strength, density as well flexural strength up to 40 percent replacement of fly ash by GGBS.


Sign in / Sign up

Export Citation Format

Share Document