scholarly journals СТАН ТА ТЕНДЕНЦІЇ РОЗВИТКУ СИСТЕМИ ЕНЕРГОЗАБЕЗПЕЧЕННЯ В УКРАЇНІ

Author(s):  
Ірина А. Ажаман ◽  
Олексій Ю. Гордєєв

The article discusses contemporary issues of ensuring energy security in Ukraine. A brief overview on the modern energy system which comprises power plants of different types, electrical and thermal networks operating in the manufacturing sector, in transmission and distribution of electrical and thermal energy. The study considers the following types of power plants in the energy system of Ukraine: nuclear, thermal, hydroelectric and hydropower stations as well as power plants working with alternative (renewable) energy sources. It is argued that the ratio of energy sources and the energy system balance is the core basis to provide the national energy security and maintain stable power supply subject to different external environment factors. The findings have revealed the dominance of coal and natural gas production in the overall energy balance of Ukraine. However, the study of import and export trends demonstrates the prevalence of energy imports, in particular coal, oil and gas. It is observed that currently, alternative energy sources are at the infant development stage. The study of alternative energy supply in Ukraine shows that over 2018–2020 the capacity of such power plants increased by 7%, in particular, the capacity of wind stations grew by 2.3 times and solar – by 4.3 times, thus exhibiting respective change in energy output. It is also observed that during the period under consideration, the renewable energy output dropped by 17.1% while wind power production increased by 2.8 times and solar – by 5.2 times, respectively. According to the results, over 2018–2020 the capacity of wind power plants increased from 0.9% to 2.0% of the total domestic output, and solar – from 2.3% to 9.4%; as to production, the share of energy generated by wind power increased from 0.8% to 2.4%, and solar – from 0.7% to 4.1%. Given the current trend of increasing energy output generated from alternative sources, there is reason to tap a growing interest in the activities of companies offering power generating equipment in the Ukrainian market. A study on the capacity needs has revealed that the most popular among consumers of autonomous power supply systems, about 70% of total sales refer to low and medium power generators in the range of 8–550 kW. The conclusions resume that the key driver in boosting the alternative energy supply system is the relevant legal framework that encourages further alternative energy supply market development and, accordingly, the market of power generating equipment in Ukraine characterized by a strong upward growth trend.

Author(s):  
Александр Григорьевич Комков ◽  
Александр Константинович Сокольский

В статье рассмотрено современное состояние энергоснабжения и перспективы развития альтернативных источников энергии на территории Крайнего Севера. Отмечено, что несмотря на острую потребность во внедрении возобновляемых источников энергии, установленные мощности всех ветряных и солнечных электростанций в регионе не превышают 7-8 МВт. Также в работе рассчитаны технический и экономический потенциал ветровой энергии региона, на основании которых подобрана наиболее эффективная установка. The article discusses the current state of energy supply and the prospects for the development of alternative energy sources in the Far North. It is noted that despite the urgent need for the introduction of renewable energy sources, the installed capacities of all wind and solar power plants in the region do not exceed 7-8 MW. Also, the technical and economic potential of the region’s wind energy was calculated based on which the most efficient installation was selected.


2018 ◽  
Vol 7 (3.5) ◽  
pp. 4
Author(s):  
Valeri Telegin ◽  
Nikolai Titov ◽  
Anatoli Stepanov

Power supply systems for small businesses based on renewable energy sources are most often based on converting wind energy, solar energy and water energy. Calculating its effectiveness is a time-consuming task, requiring the processing of a large amount of data specific for the geographical location of power generating units. In the article the technique of computer modeling of work of a park of wind power plants (WPP) with the purpose of definition of an optimum parity of their parameters is considered.   


Author(s):  
Gatis Bazbauers ◽  
Ginta Cimdina

The Role of the Latvian District Heating System in the Development of Sustainable Energy Supply The aim of the study is to determine whether and to what extent it is possible to use excess electricity produced by wind power plants during low demand periods for district heat production by heat pumps. Energy system analysis on an hourly basis is conducted at various capacities of wind power plants. The results show that it is possible to increase the share of renewable energy sources, decrease the use of primary energy sources and CO2 emissions per unit of the produced energy, i.e. heat and electricity, by using the surplus electricity produced by wind power in the heat pumps combined with the heat storage.


2021 ◽  
Vol 5 (47) ◽  
pp. 4-4
Author(s):  
Alexander Saakian ◽  
◽  

In the conditions of regions with relatively low solar and wind potentials, interruptions in power supply to consumers powered by micro-power plants based on renewable energy sources may be due to a decrease in the power of wind power plants, photovoltaic modules with insufficient wind speed and insolation, respectively, to provide power to consumers. A study of the reliability of a system including a wind power plant, photovoltaic modules, a hybrid charge controller, an energy storage device and an inverter was carried out using a logical-probabilistic method. As part of the study, an analysis was made of the structure of the power supply system and its modes of operation in the event of various events: failure of system elements, replacement of failed elements, diagnostics of elements, decrease in the power of the wind power plant and photovoltaic modules. Combinations of events leading to a power failure of consumers connected to a hybrid micro-power plant have been determined. A fault tree was built for the hybrid micro-power plant. Expressions are obtained for calculating the probability of short-term, long-term power supply interruptions, the probability of power supply interruptions occurring when off-design insolation and wind speed occur. Mathematical modeling of the reliability of the hybrid micro-power plant for the conditions of the central part of the Republic of Mari El has been carried out. It has been determined that the probability of a system failure is determined mainly by the probability of long power outages. In this case, the reliability indicators of the system as a whole are largely determined by the values of the reliability indicators of the hybrid controller and inverter. Keywords: YBRID MICRO-POWER PLANT, RENEWABLE ENERGY SOURCES, RELIABILITY, RURAL POWER SUPPLY


2018 ◽  
Vol 7 (3.5) ◽  
pp. 48
Author(s):  
Valeri Telegin ◽  
Anatoli Stepanov

Power supply systems for small businesses based on renewable energy sources are most often based on converting wind energy, solar energy and water energy. Calculating its effectiveness is a time-consuming task, requiring the processing of a large amount of data specific for the geographical location of power generating units. In the article the technique of computer modeling of work of a park of wind power plants (WPP) with the purpose of definition of an optimum parity of their parameters is considered.  


Vestnik MEI ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 67-78
Author(s):  
Aleksey A. Miroshnichenko ◽  
◽  
Evgeniy V. Solomin ◽  
Evgeniy M. Gordievsky ◽  
Askar Z. Kulganatov ◽  
...  

One of the priority objectives faced by the Russian electric power industry is supplying power to decentralized areas. These areas include the regions of the Far North and the Far East, which are characterized by remoteness from the unified energy system, low population density in vast territories, weak transport links, and undeveloped industry. In view of these features, it can be concluded that it is economically unprofitable to connect such consumers to the unified energy system. The use of renewable energy sources is the most promising solution to this problem. This, in particular, was noted by the President of Russia V.V. Putin during the “Russian Energy Week”: ‘Wind power, of course holds promise as a method for solving the problem of supplying electricity to the population, but it would be more correct to talk about the integrated use of alternative energy sources....’ Recently, the idea of using hybrid energy generation systems has become a priority issue in considering the electrification of isolated regions. Calculations have shown that such systems are more reliable and economically profitable in comparison with the generation of energy from only one of the sources. The use of combined energy generation systems is dictated by several factors, the main of which is that individual sources of renewable energy are variable in nature, which entails difficulties in ensuring uninterrupted power supply. Such problems do not arise in the case of using hybrid systems. The possibility of using a load distribution control strategy for a hybrid system consisting of photovoltaic panels, a diesel generator, and storage batteries, and operating according to a specified load schedule with the known battery charge/discharge cycles is considered. It is pointed out that the HOMER software package is a suitable tool for carrying out an optimization analysis regarding the technical, economic, and environmental factors of the proposed systems, taking into account the load variation pattern, battery charge/discharge cycles and distributed load. By using this software, it is possible to select the most optimal control strategy for combined power supply systems that allows, along with improving their reliability, better efficiency and longer service life to be obtained.


2020 ◽  
Vol 175 ◽  
pp. 11009
Author(s):  
Nikolay Rudenko ◽  
Valery Ershov ◽  
Viacheslav Evstafev

The article contains the following technical proposals for the power supply of autonomous agricultural facilities using renewable energy sources: the use of hybrid solar-wind power plants, the use of vortex wind power plants with a vertical axis to use both the energy of horizontal wind flows and the energy of upward air flows. The structure and operation algorithm of an autonomous power supply system based on a hybrid solarwind power plant and a diesel generator for autonomous agricultural facilities of small and medium power in regions where there is no distribution electric network are proposed. This system will allow for insufficient wind load to ensure reliable power supply to an autonomous agricultural facility with minimal use of diesel fuel. The design of a vortex wind power installation has been developed. The fastening on the shaft of the wind power installation of a conical helical blade with a variable radius, decreasing in the direction from the lower to the upper cut of the socket, improves the efficiency of the installation. The proposed installation makes it possible to use small winds and low-potential thermal ascending air currents, reduce low-frequency vibration and noise, and also increase the stability and efficiency of use of wind energy.


2020 ◽  
Vol 154 ◽  
pp. 06004
Author(s):  
Yuriy Pantsyr ◽  
Іhor Garasymchuk ◽  
Vasyl Duganets ◽  
Mariia Melnyk ◽  
Oksana Yurchenko

The analysis of the development of alternative energy sources in the developed countries of the world was carried out, as well as the strategy of the implementation of wind energy in Ukraine was considered. The emphasis was on the design and operation of wind power units and the investment of investment funds in modernizing existing wind power plants and building new ones. The most attractive regions for wind power use in Ukraine was presented. The advantages and disadvantages of using nontraditional energy sources and the features of operation of wind power plants were substantiated.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1913
Author(s):  
Christos S. Ioakimidis ◽  
Hana Gerbelova ◽  
Ali Bagheri ◽  
Sesil Koutra ◽  
Nikolaos Koukouzas

This paper presents a roadmap performed in 2010 as part of a European project for the modelling of carbon capture and storage technology, and various scenarios with different taxations and permit prices for the CO2 emissions considering the Greek national plans, then the gradual decommissioning of various lignite or other units of electricity power plants. In addition, this study presents a first check, 10 years after its writing, of the current situation of the Greek energy system, regarding the correspondence of the roadmap designed in 2010 to what has been finally executed during this period, including the possibility of other energy sources complimenting or substituting the national strategic energy plans. For this purpose, the integrated MARKAL-EFOM system (TIMES) was employed to model the Greek energy system and evaluate its development over time, until 2040, by analyzing three different scenarios with respect to taxation and permit prices for carbon emissions. The results obtained show that, if this study had been considered and executed by the different stakeholders during that period, then the implementation of CCS in the new licensed power plants from 2010 and onwards could reduce the use of lignite and imported hard coal power production in a much smoother and beneficial way in the next years, and until the present, without compromising any major power plants. This implementation would also make the transition to a lignite free economy in Greece much faster and better, while complimenting the EU regulations and also enhancing the possible greater use of alternative energy sources in the green energy mixture.


Author(s):  
Yuliya S. Borisova ◽  
Nataliya S. Samarskaya

Introduction. Active withdrawal of energy raw materials from the subsoil, as well as technogenic impact from energy sources based on traditional fuel, lead to irreversible environmental consequences. To minimize this impact, it is necessary to start from two main conditions: the search for alternative energy sources and the improvement of the existing ones. Problem Statement. The objective of this study is a comparative analysis of energy facilities in order to identify the plant that has the greatest negative impact on the environment. Theoretical part. The comparative analysis of various energy production systems reflects the ecological and economic components of each. For example, a thermal power plant (TPP), a nuclear power plant (NPP) and a wind power plant (WPP) are considered. The negative impact on the environment is mainly exerted on the atmospheric air, in connection with which the data on the amount of pollutants are considered. Also, a modified Leopold matrix was constructed for an expert assessment of the mentioned stations. Conclusions. The results of the analysis show that among the considered power plants, the wind power plant is the most environmentally friendly and favorable for the health of the population.


Sign in / Sign up

Export Citation Format

Share Document