scholarly journals GEODYNAMICS AND MAGMATISM OF THE PACIFIC-TYPE TRANSFORM MARGINS. ASPECTS AND DISCRIMINANT DIAGRAMS

Author(s):  
A.V. Grebennikov ◽  
◽  
A.I. Khanchuk ◽  

Transform margins represent lithospheric plate boundaries with horizontal sliding of oceanic plate, which in time and space replaced the subduction related convergent margins. This happened due to: spreading ridge–trench intersection (California; Queen Charlotte–Northern Cordilleran, West of the Antarctic Peninsula, and probably the Late Miocene–Pleistocene Southernmost South America) or ridge death along continental margin (Baja California); change in the direction of oceanic plate movement (Western Aleutian–Komandorsk; Southernmost tip of the Andes); and island arc-continent collision (New Guinea Island). Post-subduction magmatism is related to a slab window that resulted either from the spreading ridge collision (subduction) with a continental margin or slab tear formation, or slab break-off after subduction cessation due to other reasons. Igneous magmatic series formed in consequence of these events show diversity of tholeiitic (sub-alkaline), alkaline or calc-alkaline, high-alumina and adakitic rocks. The comprehensive geochemical dataset (more than 2400 analyses) on igneous rocks of the model transform and convergent geodynamic settings allowed to substantiate the most informative triple diagrams for the petrogenic oxides TiO2 × 10 – Fe2O3Tot – MgO and trace elements Nb – La– Yb. Mostly approved for the rock compositions with SiO2 < 63 wt. %, the new plots are capable of distinguishing igneous rocks formed above zones of subduction at an island arc and continental margin (related to convergent margins), from those formed in the tectonic setting of transform margins along continents or island arcs.

Author(s):  
Xiu Liu ◽  
Xinqi Yu ◽  
Pengju Li ◽  
Jun Hu ◽  
Mengyan Liu ◽  
...  

Yanshanian granitoids (178–120 Ma, Jurassic to Cretaceous), which intruded into Precambrian crystalline base- ment and Paleozoic strata, are widely distributed at the junction of the Zhejiang, Jiangxi and Anhui provinces (the ZGW region) in southern China, along with coeval volcanic rocks. This paper summarizes zircon U–Pb age data, geochemi- cal characteristics and Sr-Nd isotopic characteristics of the Late Jurassic to Middle Cretaceous granitoids and volcanic rocks from the ZGW region. We demonstrate that members of the Shiling rhyolite formed during two different periods of magmatic activity at 154.7 ± 2.5 Ma and 139–134 Ma and that igneous rocks from the different periods have distinct geochemical characteristics. Jurassic igneous rocks of the ZGW region have relatively low SiO2and high Al 2O3contents, and show enrichment of large ion lithophile elements (LILEs) and depletion of high field strength elements (HFSEs). They are strongly enriched in LREE and depleted in HREEs with weakly negative Eu anomalies and strongly negative Nb, Ta anomalies. Rb and Y concentrations follow the trends of I-type and S-type granites. By contrast, Cretaceous igneous rocks of this region are characterized by high SiO2and low Al2O3contents with negative Eu anomalies. They have typical wing- shaped rare earth element (REE) distribution patterns and show enrichment of Rb, Th, U, Nb, Ta and depletion of Ba, Sr, P and Ti. They have affinity to A-type peraluminous granites or highly-fractionated felsic rocks. Overall, the igneous rocks evolved from high-Sr low-Yb to low-Sr high-Yb, which might reflect the evolution of the tectonic setting from subduction to lithospheric extension/thinning, i. e., a transition from a continental margin subduction setting during the Late Jurassic to a within-plate extensional setting during the Early Cretaceous, at c. 142 ± 3 Ma. The repeated alternation between lava extrusion and extension and extensional fault kinematics in the late Mesozoic is related to the changes of direction and rate of plate movement of the Izanagi and Pacific plates.


2018 ◽  
Vol 156 (4) ◽  
pp. 683-701 ◽  
Author(s):  
XINGHAI LANG ◽  
DONG LIU ◽  
YULIN DENG ◽  
JUXING TANG ◽  
XUHUI WANG ◽  
...  

AbstractJurassic sandstones in the Xiongcun porphyry copper–gold district, southern Lhasa subterrane, Tibet, China were analysed for petrography, major oxides and trace elements, as well as detrital zircon U–Pb and Hf isotopes, to infer their depositional age, provenance, intensity of source-rock palaeo-weathering and depositional tectonic setting. This new information provides important evidence to constrain the tectonic evolution of the southern Lhasa subterrane during the Late Triassic – Jurassic period. The sandstones are exposed in the lower and upper sections of the Xiongcun Formation. Their average modal abundance (Q21F11L68) classifies them as lithic arenite, which is also supported by geochemical studies. The high chemical index of alteration values (77.19–85.36, mean 79.96) and chemical index of weathering values (86.19–95.59, mean 89.98) of the sandstones imply moderate to intensive weathering of the source rock. Discrimination diagrams based on modal abundance, geochemistry and certain elemental ratios indicate that felsic and intermediate igneous rocks constitute the source rocks, probably with a magmatic arc provenance. The detrital zircon ages (161–243 Ma) and εHf(t) values (+10.5 to +16.2) further constrain the sandstone provenance as subduction-related Triassic–Jurassic felsic and intermediate igneous rocks from the southern Lhasa subterrane. A tectonic discrimination method based on geochemical data of the sandstones, as well as detrital zircon ages from sandstones, reveals that the sandstones were most likely deposited in an oceanic island-arc setting. These results support the hypothesis that the tectonic background of the southern Lhasa subterrane was an oceanic island-arc setting, rather than a continental island-arc setting, during the Late Triassic – Jurassic period.


2021 ◽  
Author(s):  
◽  
Robin Keith Halcro Falconer

<p>Geophysical data - primarily magnetic field measurements, bathymetry, and seismicity data - are presented for the area between New Zealand and Antarctica from approximately 145[degrees]W to 155[degrees]E. The data are used to determine the structure of the Pacific-Antarctic boundary, the oceanic part of the Pacific plate and the area of intersection of the Indian, Pacific and Antarctic plates. In the southwest Pacific basin the magnetic anomalies are very clear and an extensive pattern of anomaly lineations with some offsets is mapped. The magnetic anomalies show that the uniform Pacific basin area formed between about 83 and 63 mybp. The Pacific-Antarctic boundary is shown to differ either side of about 175[degrees]W. To the east it is a relatively uniform aseismic spreading ridge, offset by some transform faults. West of 175[degrees]W, to 161[degrees]E, the boundary consists of a seismically active zone of disturbed bathymetry and magnetic anomalies striking about N.70[degrees]W. The zone, the Pacific-Antarctic fracture zone, probably consists of several fractures striking about N45[degrees]W. The area between the Pacific-Antarctic boundary and the southwest Pacific basin represents the interval 10 to -55 mybp, and only in the east are anomaly lineations clear. The Indian-Antarctic Pacific triple junction is near 61.5[degrees]S, 161[degrees]E and is a stable ridge-fault-fault junction; the Indian-Antarctic boundary being the ridge. Plate tectonics is applied to the area and the structure is shown to fit, and be explained by a different rotation pole for each of the major intervals indicated by the structure, i.e. 0-10 mybp, 10-63 mybp and 63-80 mybp. The poles, with rotation rates deduced from the magnetic anomalies, are used to reconstruct the position of New Zealand relative to Antarctica at 80 mybp. The two continents probably started to separate at close to 83 mybp. The times of the major changes of structure and plate movement in the area are shown to coincide with major plate movement changes in the southwest Pacific area and in the rest of the world. A new method for determining poles of rotation, based only on epicentre locations is presented, The method is applied to independently determine the Indian-Pacific, Pacific-Antarctic and Indian-Antarctic poles. The poles should form a consistent. set and they do. The method yields effectively instantaneous poles, is quantitative, and is applicable to most plate boundaries. Earthquake magnitude-frequency relationship b values for the plate boundaries in the area are determined. Comparisons with results from elsewhere indicate an association of high b with high temperature and conversely. Several factors which have previously been suggested as determining b value are shown to not be determinants. A revised and extended magnetic reversal time scale based on model studies of the southwest Pacific basin anomalies is presented. Other model studies indicate that a magnetized layer thickness of at least 2 km is probable. Variations of anomaly amplitudes are studied. A detailed study of the application of numerical correlation techniques to magnetic anomalies is presented. It is concluded that horizontal scale variations and discontinuities in profiles can be critical. Methods for over-coming some of the problems, and for determining quantitative error estimates, are. given. The methods, and conclusions, are applicable to any correlation problem.</p>


2021 ◽  
Author(s):  
◽  
Robin Keith Halcro Falconer

<p>Geophysical data - primarily magnetic field measurements, bathymetry, and seismicity data - are presented for the area between New Zealand and Antarctica from approximately 145[degrees]W to 155[degrees]E. The data are used to determine the structure of the Pacific-Antarctic boundary, the oceanic part of the Pacific plate and the area of intersection of the Indian, Pacific and Antarctic plates. In the southwest Pacific basin the magnetic anomalies are very clear and an extensive pattern of anomaly lineations with some offsets is mapped. The magnetic anomalies show that the uniform Pacific basin area formed between about 83 and 63 mybp. The Pacific-Antarctic boundary is shown to differ either side of about 175[degrees]W. To the east it is a relatively uniform aseismic spreading ridge, offset by some transform faults. West of 175[degrees]W, to 161[degrees]E, the boundary consists of a seismically active zone of disturbed bathymetry and magnetic anomalies striking about N.70[degrees]W. The zone, the Pacific-Antarctic fracture zone, probably consists of several fractures striking about N45[degrees]W. The area between the Pacific-Antarctic boundary and the southwest Pacific basin represents the interval 10 to -55 mybp, and only in the east are anomaly lineations clear. The Indian-Antarctic Pacific triple junction is near 61.5[degrees]S, 161[degrees]E and is a stable ridge-fault-fault junction; the Indian-Antarctic boundary being the ridge. Plate tectonics is applied to the area and the structure is shown to fit, and be explained by a different rotation pole for each of the major intervals indicated by the structure, i.e. 0-10 mybp, 10-63 mybp and 63-80 mybp. The poles, with rotation rates deduced from the magnetic anomalies, are used to reconstruct the position of New Zealand relative to Antarctica at 80 mybp. The two continents probably started to separate at close to 83 mybp. The times of the major changes of structure and plate movement in the area are shown to coincide with major plate movement changes in the southwest Pacific area and in the rest of the world. A new method for determining poles of rotation, based only on epicentre locations is presented, The method is applied to independently determine the Indian-Pacific, Pacific-Antarctic and Indian-Antarctic poles. The poles should form a consistent. set and they do. The method yields effectively instantaneous poles, is quantitative, and is applicable to most plate boundaries. Earthquake magnitude-frequency relationship b values for the plate boundaries in the area are determined. Comparisons with results from elsewhere indicate an association of high b with high temperature and conversely. Several factors which have previously been suggested as determining b value are shown to not be determinants. A revised and extended magnetic reversal time scale based on model studies of the southwest Pacific basin anomalies is presented. Other model studies indicate that a magnetized layer thickness of at least 2 km is probable. Variations of anomaly amplitudes are studied. A detailed study of the application of numerical correlation techniques to magnetic anomalies is presented. It is concluded that horizontal scale variations and discontinuities in profiles can be critical. Methods for over-coming some of the problems, and for determining quantitative error estimates, are. given. The methods, and conclusions, are applicable to any correlation problem.</p>


Author(s):  
R. A. Smith ◽  
E. R. Phillips ◽  
J. D. Floyd ◽  
H. F. Barron ◽  
E. A. Pickett

ABSTRACTA new model for the provenance, depositional environment and tectonic setting of the Northern Belt of the Southern Uplands is presented. This turbiditic sandstone-dominated sequence was deposited in a sand-rich submarine fan environment, overlying sparse hemipelagic mudstones. The oldest sandstones are rich in juvenile ophiolitic material and record the first clastic input into the Southern Uplands basin. The bulk of the Northern Belt sedimentary sequence, however, is dominated by relatively quartzose sandstones derived from a Proterozoic continental/metamorphic source represented by the Midland Valley terrane of Scotland and Ireland. The quartzose-dominated succession was punctuated by the input of fresh volcanic detritus shed from an oceanic/continental island-arc situated to the W/NW of the Northern Belt basin, with sediment dispersal turning to the NE along the axis of the basin in Scotland. The tectonic setting of the Northern Belt basin remains uncertain. The complex provenance of the sandstones and recognition of major olistostrome units within the Northern Belt succession suggest that it was tectonically active. The onset of clastic deposition within the Southern Uplands terrane broadly corresponds to uplift and erosion of earlier obducted ophiolite in both Scotland and Ireland, possibly in response to collision of Cambrian–early Ordovician island-arc systems with the Laurentian continental margin. If this interpretation is correct, then the possibility arises that the Southern Uplands–Midland Valley terranes record the dismembering of this oceanic/continental island-arc complex within an overall transpressional regime.


2021 ◽  
Vol 62 (4) ◽  
pp. 389-400
Author(s):  
V.A. Makrygina

Abstract —Analysis of geochemical, geochronological, and new geophysical data on metasedimentary and igneous rocks of the Ol’khon region has made it possible to substantiate: (1) the absence of products of the Caledonian suprasubduction magmatism from the adjacent part of the Siberian craton and (2) the presence of a product of this magmatism in the Anga–Talanchan island arc, namely, the Krestovsky massif with gabbro-diorite to granite phases. This suggests subduction of the Paleoasian oceanic crust under the island arc before the collision. The geophysical data showed a steep sinking of the Siberian craton margin. This sinking and the supposed contrary movement and rotation of the Siberian craton prevented the appearance of a subduction zone beneath the craton during the collision but caused the wide development of fault plates in the fold belt at the late collision stage. The residue of oceanic crust slab was pressed out along the fault planes near the surface and formed a row of gabbro-pyroxenite massifs of the Birkhin Complex in the fold belt, where syncollisional granitic melts (Sharanur Complex) formed at the same time. The interaction of two contrasting melts gave rise to the Tazheran and Budun alkaline syenite massifs and alkaline metasomatites of the Birkhin and Ulanganta gabbroid massifs.


1989 ◽  
Vol 26 (3) ◽  
pp. 479-489 ◽  
Author(s):  
Brian F. Windley

The Grenvillian Orogeny was preceded by extensive anorogenic volcanism and plutonism in the period 1500–1300 Ma in the form of rhyolites, epizonal granites, anorthosites, gabbros, alkaline complexes, and basic dykes. An analogue for the mid-Proterozoic anorogenic complexes is provided by the 2000 km by 200 km belt of anorogenic complexes in the Hoggar, Niger, and Nigeria, which contain anorthosites, gabbros, and peralkaline granites and were generated in a Cambrian to Jurassic rift that farther south led to the formation of the South Atlantic. An analogue for the 1 × 106 km2 area of 1500–1350 Ma rhyolites (and associated epizonal granites) that underlie the mid-continental United States is provided by the 1.7 × 106 km2 area of Jurassic Tobifera rhyolites in Argentina, which were extruded on the stretched continental margin of South America immediately preceding the opening of the South Atlantic. The mid-Proterozoic complexes were intruded close to the continental margin of the Grenvillian ocean and were commonly superimposed by the craton-directed thrusts that characterized the final stages of the Grenvillian Orogeny. The bulk of the Keweenawan rift and associated anorogenic magmatism formed about 1100 Ma at the same time as the Ottawan Orogeny in Ontario, which probably resulted from the collision of the island arc of the Central Metasedimentary Belt attached to the continental block in the east with the continental block to the west. The most appropriate modern equivalent would be the Rhine Graben, which formed at the same time as the main Alpine compression.


Sign in / Sign up

Export Citation Format

Share Document