scholarly journals Spatial and temporal variations of hydrodynamics and sediment dynamics in Indus River Estuary,Pakistan

2021 ◽  

<p>Field investigations were conducted to study the seasonal variation of hydrodynamics and sediment transport in Indus River Estuary (IRE), Pakistan. The data of water levels, currents, salinity, and suspended sediment concentration (SSC) were collected hourly covering both wet and dry seasons. Tidal amplitudes were higher near the mouth than those at the middle and upper estuary. The ebb phase lasted longer than that of the flood during the wet season. The asymmetric tidal pattern with higher ebb velocity was observed during the wet season. A slight difference in current velocity was found during the dry season. The flood currents were higher at middle estuary than those in wet season. During the wet season, salinity variation within a tidal cycle slightly increased from the upper estuary to the mouth. Salinity was substantially higher during the dry season than the wet season at all three stations, with the absence of the flood-ebb variation, showing a strong saltwater intrusion. The SSC data revealed that the sediments were mainly brought into the estuary by freshwater discharge during the wet season. Sediment re-suspension process persists during the dry season, due to the tidal currents. A stronger saltwater intrusion occurred in the dry season due to weak river discharge. An estuarine turbidity maximum zone was formed near station-2 due to the combined effects of tides, river discharge and saltwater intrusion. Overall, field observations have shown a significant spatial and temporal variation in flood/ebb and wet/dry seasons for hydrodynamics and sediment transport in IRE.</p>

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1854
Author(s):  
Xia Hua ◽  
Huiming Huang ◽  
Yigang Wang ◽  
Xiao Yu ◽  
Kun Zhao ◽  
...  

The estuarine turbidity maximum (ETM) under strong tidal dynamics (during spring tides) was investigated along the Deepwater Navigation Channel (DNC) in the North Passage (NP) of the Changjiang River Estuary (CRE) in wet and dry seasons of 2016, 2017 and 2018. The observed water current, salinity, stratification and suspended sediment concentration (SSC) were illustrated and analyzed. Results show that the SSC was lower in wet seasons than dry seasons in 2016 and 2017 because of the weak influence of typhoons before observations in wet seasons. On the contrary, the SSC was higher in the wet season than the dry season in 2018 because of the strong influence of typhoons in the wet season. Our observations challenged the common perspective that SSC in the NP is higher in wet seasons than dry seasons, because the magnitudes of SSC were found to be easily influenced by strong winds before observations. The along-channel distribution of high SSC was determined by the location of salt wedge, and consequently, the ETM was further upstream in dry seasons than wet seasons. The observed SSC was more concentrated in lower water layers in wet seasons (“exponential” profile) than dry seasons (“linear” profile). This seasonal difference of vertical SSC was related to the flocculation setting velocity influenced by temperature rather than the weak stratification during spring tides. Moreover, on the basis of the net water/sediment transport and flux splitting, large river discharge and a low-SSC condition could reduce siltation in the middle DNC. The former vanished the convergence of water transport, and the latter reduced landward tidal pumping sediment transport. Sediment trapping and siltation in the dry seasons occurred in the seaward segment of the upper reach because of the decrease in the river discharge.


MAUSAM ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 643-654
Author(s):  
NOOR AHMED KALHORO ◽  
ZHIGUO HE ◽  
DONGFENG XU ◽  
ASIF INAM ◽  
FAIZ MUHAMMAD ◽  
...  

Field investigations were conducted to study spatial and temporal (seasonal) variations in meteorological, hydrodynamic and hydrological variables in Indus River Estuary. The investigations were undertaken during wet, (moderate fluvial discharge), flood (highest fluvial discharge) and dry (zero fluvial discharge) seasons to obtain surface and near bed data during flood and ebb tides. Tides were semidiurnal, showing an asymmetric pattern with longer ebb tides and shorter flood tides. The hydrodynamic data revealed strong seasonal variation, the ebb velocities were significantly higher than flood current velocities during wet season, whereas a slight difference was found in current velocities during dry season, while the ebb phase lasted longer than flood during wet season; however no significant difference was observed during dry season. On the other hand during flood period the water currents were substantially higher and unidirectional related to the strong river flow. Turbidity values were considerably higher during flood season, than wet and dry seasons along the channel. However hydrological parameters such as temperature and dissolved Oxygen also revealed seasonal and spatial fluctuations, though they were within permissible range. The salinity distribution along the channel was related to the incoming river flow and tidal propagation. Higher salinity values were recorded in dry season, suggested that salinity variation at Estuary was due to salt intrusion from the North Arabian Sea, related to the absent of fluvial discharge form Indus River. Present study revealed substantial changes for hydrology and hydrodynamic conditions of the Indus River Estuary, related to the varying Indus River flow, as well as winds are another important atmospheric force in this region which enhanced the tidal forcing during southwest monsoon.


2000 ◽  
Vol 6 (1) ◽  
pp. 61 ◽  
Author(s):  
John C. Z. Woinarski ◽  
Greg Connors ◽  
Don C. Franklin

We create monthly maps of nectar availability for the 1.4 x 106 km2 jurisdiction of the Northern Territory, Australia. These are based on a combination of vegetation mapping and a series of indices of plant species specific nectar scoring. The maps reveal complex spatial and temporal variation in nectar availability, but most notably a greater nectar resource in the monsoon-influenced north than in the arid south, and a peak in nectar availability in the dry season. The latter is associated with the extensive tropical eucalypt forests (especially those co-dominated by Eucalyptus miniata and E. tetrodonta). In contrast, wet season nectar availability in these forests is limited, but riparian and swampland forests, typically dominated by Melaleuca species, provide rich but spatially restricted nectar resources. The extensive and rich nectar resources available in eucalypt forests in the dry season supplement the diets of many species which are not primarily nectarivorous. This resource helps shape the singularity of northern Australian eucalypt forests relative to other extensive forests elsewhere in the world. Nectarivores remain in the system through a combination of movements across a number of scales, habitat shifting, and diet shifting. The latter is aided by the peaking of invertebrate and fruit resources at the times of minimum nectar production; a shuffling in resource availability brought about by the extreme climatic seasonality.


2002 ◽  
Vol 62 (2) ◽  
pp. 339-346 ◽  
Author(s):  
J. RAGUSA-NETTO

Figs are a remarkable food resource to frugivores, mainly in periods of general fruit scarcity. Ficus calyptroceras Miq. (Moraceae) is the only fig species in a type of dry forest in western Brazil. In this study I examined the fruiting pattern as well as fig consumption by birds in F. calyptroceras. Although rainfall was highly seasonal, fruiting was aseasonal, since the monthly proportion of fruiting trees ranged from 4% to 14% (N = 50 trees). I recorded 22 bird species feeding on figs. In the wet season 20 bird species ate figs, while in the dry season 13 did. Parrots were the most important consumers. This group removed 72% and 40% of the figs consumed in the wet and dry seasons, respectively. No bird species increases fig consumption from dry to wet season. However, a group of bird species assumed as seed dispersers largely increases fig consumption from wet to dry season, suggesting the importance of this resource in the period of fruit scarcity. The results of this study points out the remarkable role that F. calyptroceras plays to frugivorous birds, in such a dry forest, since its fruits were widely consumed and were available all year round.


1988 ◽  
Vol 24 (2) ◽  
pp. 183-189 ◽  
Author(s):  
D. P. Singh ◽  
P. K. Singh

SUMMARYThe effects of phosphorus fertilizer and the insecticide carbofuran on the growth and N2-fixation of Azolla pinnata and on the growth, grain yield and nitrogen uptake of intercropped rice were examined in a wet and a dry season. Treatment with phosphorus or carbofuran increased the biomass of Azolla and the amount of nitrogen fixed (nitrogen yield) in both seasons, but the response was much better in the dry season. Azolla inoculation at 1.0 t ha−1 resulted in a greater bio mass and nitrogen yield than inoculation at 0.5 t ha−1. In the dry season, a combination of phosphorus and carbofuran enhanced the growth and N2-fixation of Azolla more than either treatment alone. Carbofuran treatment slowed the rate of decomposition of Azolla, particularly in the dry season. The plant height, leaf area index and dry matter production of rice at flowering time were increased in the plots treated with phosphorus or carbofuran in the wet season and these treatments increased rice grain yield and nitrogen uptake in both the wet and dry seasons.


2020 ◽  
Vol 60 (5) ◽  
pp. 683
Author(s):  
M. K. Bowen ◽  
F. Chudleigh ◽  
R. M. Dixon ◽  
M. T. Sullivan ◽  
T. Schatz ◽  
...  

Context Phosphorus (P) deficiency occurs in beef cattle grazing many rangeland regions with low-P soils, including in northern Australia, and may severely reduce cattle productivity in terms of growth, reproductive efficiency and mortality. However, adoption of effective P supplementation by cattle producers in northern Australia is low. This is likely to be due to lack of information and understanding of the profitability of P supplementation where cattle are P-deficient. Aims The profitability of P supplementation was evaluated for two dissimilar regions of northern Australia, namely (1) the Katherine region of the Northern Territory, and (2) the Fitzroy Natural Resource Management (NRM) region of central Queensland. Methods Property-level, regionally relevant herd models were used to determine whole-of-business productivity and profitability over 30 years. The estimated costs and benefits of P supplementation were obtained from collation of experimental data and expert opinion of persons with extensive experience of the industry. The economic consequences of P supplementation at the property level were assessed by comparison of base production without P supplementation with the expected production of P-supplemented herds, and included the implementation phase and changes over time in herd structure. In the Katherine region, it was assumed that the entire cattle herd (breeders and growing cattle) grazed acutely P-deficient land types and the consequences of (1) no P supplementation, or P supplementation during (2) the dry season, or (3) both the wet and dry seasons (i.e. 3 scenarios) were evaluated. In the Fitzroy NRM region, it was assumed that only the breeders grazed P-deficient land types with three categories of P deficiency (marginal, deficient and acutely deficient), each with either (1) no P supplementation, or P supplementation during (2) the wet season, (3) the dry season, or (4) both the wet and dry seasons (i.e. 12 scenarios). Key results In the Katherine region, year-round P supplementation of the entire cattle herd (7400 adult equivalents) grazing acutely P-deficient pasture resulted in a large increase in annual business profit (+AU$500000). Supplementing with P (and N) only in the dry season increased annual business profit by +AU$200000. In the Fitzroy NRM region, P supplementation during any season of the breeder herd grazing deficient or acutely P-deficient pastures increased profit by +AU$2400–AU$45000/annum (total cattle herd 1500 adult equivalents). Importantly, P supplementation during the wet season-only resulted in the greatest increases in profit within each category of P deficiency, comprising +AU$5600, AU$6300 and AU$45000 additional profit per annum for marginal, deficient and acutely P-deficient herds respectively. Conclusions The large economic benefits of P supplementation for northern beef enterprises estimated in the present study substantiate the current industry recommendation that effective P supplementation is highly profitable when cattle are grazing P-deficient land types. Implications The contradiction of large economic benefits of P supplementation and the generally low adoption rates by the cattle industry in northern Australia suggests a need for targeted research and extension to identify the specific constraints to adoption, including potential high initial capital costs.


2021 ◽  
Author(s):  
Mara Orescanin ◽  
Tyonna McPherson ◽  
Paul Jessen

&lt;p&gt;The Carmel River runs 58 km from the Santa Lucia Mountains through the Carmel Valley eventually entering a lagoon at Carmel River State Beach near Carmel, California, USA. During the dry summer months, the lagoon is closed, with no connection to the coastal ocean.&amp;#160; However, during the wet winter months, the river often breaches through the lagoon allowing water to freely flow between the river and Carmel Bay. Sediment transport, in part owing to river discharge and in part owing to ocean forcing (tides and waves), contributes heavily to whether the lagoon is open or closed: when there are low flow conditions, waves and tides can decrease flow rates in the breach, allowing sediment to settle. The sediment budget is expected to be a closed system, owing to the rocky headlands and long-term stability (no yearly regression or transgression) of the shoreline, despite managed attempts to control breach and closure timing. However, it is currently unknown 1) how velocity profiles evolve during breaching, and 2) how much sediment moves during such an event. The hypothesis is that the breach mouth can completely disappear and re-emerge over a single breach-closure cycle, leading to meter-scale daily accretion and erosion rates of berm height if berm elevation is significantly lower than the expected steady-state berm height. Furthermore, it is hypothesized that during active breaching, discharge rates through the breach channel are larger than upstream river discharge rates owing to elevated water levels within the back lagoon. This study uses a RiverSurveyor M9 Acoustic Doppler Profiler to measure outflow discharge and GPS topographic surveys to quantify elevation changes. A velocity profile can be built which will estimate the sediment transport potential within the breach. The information obtained will help identify and better understand the river discharge thresholds which contribute to frequent breaching as well as estimates of morphological evolution during breaching, which are currently unknown, and can assist in determining likelihood of successful managed breaching and closure events.&amp;#160;&lt;/p&gt;


2021 ◽  
Vol 36 (1) ◽  
pp. 93-105
Author(s):  
A.N. Okereke ◽  
J.C. Ike-Obasi

Seasonal effects on microbial load of sediment and water at different locations along Bonny Estuary of Niger Delta was investigated for a period of 12 months. All analyses followed standard procedure. Results revealed that total fungi counts in sediment and water at different locations were not significantly different (p > 0.05) at both wet and dry seasons while hydrocarbon utilizing fungi showed significant differences (p < 0.05) at both seasons in both sediment and water samples. During the wet season, total faecal counts ranged from 5.0 to 10.0 x 105 CFU/g for sediment and 4.0 to 7.0x 105 CFU/g in water. In dry season, the concentration of hydrocarbon utilizing bacteria in the sediment ranged between 0.1 x 105 CFU/ml/g and 8.0 x 105 CFU/ml/g in wet season while in dry season, the concentration in water ranged between 0.1 x 105 CFU/ml/g and 6.0 x 105 CFU/ml/g at Abuloma. At Okwujagu, total heterotrophic bacteria counts in sediment ranged  from 0.1 to 8.0 x 105 CFU/g in dry season. This was higher than the range 0.1 to 6.8.0 x 105 CFU/ recorded in Abuloma, Okwujagu and Slaughter at dry season. The highest vibrio counts in water (11.0 x 105 CFU/ml) for wet and (10.0 x 105 CFU/ml) for dry seasons were recorded at Slaughter. In Oginiba, the feacal count recorded 3.0 x 105 CFU/ml in water during the wet season and 2.0 x 105 CFU/ml for dry season. Generally, there were significant differences (p < 0.05) in the bacterial concentrations in both sediment and water. This showed that different seasons favour the growth of certain microbial types.


2020 ◽  
Vol 42 (3) ◽  
pp. 211
Author(s):  
Kurt Watter ◽  
Greg Baxter ◽  
Michael Brennan ◽  
Tony Pople ◽  
Peter Murray

Chital deer (Axis axis) were introduced to the Burdekin dry tropics of north Queensland, Australia, in the late 1800s. Here rainfall and plant growth are highly seasonal and a nutritional bottleneck for grazing animals occurs annually before the wet season. This study describes the seasonal changes in diet and diet preference of chital in this seasonally-variable environment. Rumen samples were taken from 162 deer from two sites over the wet and dry seasons of two consecutive years and sorted macroscopically for identification. Relative seasonal availability of plant groups was estimated using step point sampling of areas grazed by chital. Chital alter their diet seasonally according to availability and plant phenology. Chital utilised 42 plant genera including grasses, forbs, subshrubs, shrubs, trees and litter. Grass consumption ranged from 53% of biomass intake during the dry season to 95% during the wet season. The predominance of grass in the wet season diet exceeded relative availability, indicating a strong preference. Although grass contributed more than half of the dry season diet it was the least preferred plant group, given availability, and the least actively growing. Shrubs were the preferred plant type in the dry season, and least subject to seasonal senescence. Composition and quantity of seasonal pastures vary markedly in north Queensland, and chital alter their diet by consuming those plants most actively growing. The increased dry season intake of non-grass forage appears to be a strategy to limit the detriment resulting from the progressive deterioration in the quality of grass.


Sign in / Sign up

Export Citation Format

Share Document