scholarly journals Estimates of genetic parameters for grain yield, various yield components and some quality traits in rice (Oryza sativa L.)

2018 ◽  
Vol 10 (1) ◽  
pp. 459-465
Author(s):  
Gaurav Kamboj ◽  
Pradeep Kumar ◽  
Devi Singh

A study was conducted during two crop season (Kharif, 2011-12 and 2012-13) for estimating the genetic parameters by involving 10 parents and their 45 F1s in rice crop. The estimates of h2 (overall dominance effects) were positive and significant for days to 50 % flowering (9.11), days to maturity (0.24), plant height (2.95), panicle length1(39), productive tillers per plant (3.22), branches per panicle (5.61), flag leaf area (5.50), 1000-grain weight (0.27), biological yield (7.35) and amylose content (1.03) which indicated dominance of genetic components in F1s crosses. The theoretical value (0.25) of (H2/4H1) for all the traits except kernel length and amylose content indicated the asymmetrical distribution of positive and negative genes in the parents. The proportion of dominant and recessive alleles for panicle length, productive tillers, branches per panicle, 1000 grain weight, biological yield, kernel length and L/B ratio reflected more dominant alleles, whereas for days to 50 % flowering, days to maturity, plant height, grains per panicle, flag leaf area, grain yield, harvest index, kernel breadth, kernel length after cooking, elongation ratio, amylose content and hulling %, reflected more recessive alleles in the parents. The estimates of specific combining ability (SCA) effects revealed that the cross Vallabh Basmati 21 x Pusa 1121 could be an excellent candidate for improving grain yield (1.52**), harvest index (1.86**) and flag leaf area (6.20**) whereas Pusa 1121 x CSR 10 is excellent candidate for panicle length (0.89**) and amylose content (1.54**). The characters showing more than 60 % narrow sense heritability along with positive and significant correlation with each other and also with grain yield could be rewarding for further improvement of yield and quality in rice. Therefore, these parental lines can be used as donors in future by following bi-parental mating and the diallel selective mating system could be the best breeding method in an early segregating generation for improvement in these traits in rice crop.

2019 ◽  
Vol 4 (02) ◽  
pp. 135-139
Author(s):  
Ravi Kumar ◽  
Anant Kumar ◽  
Joginder Singh

Genetic variability, heritability, genetic advance and correlation coefficients were studied in 104 genotypes of wheat genotypes for yield and yield contributing traits. Both GCV and PCV were found to be moderate for flag leaf area, biological yield per plant, grain yield per plant and ash content. The days to ear emergence, days to maturity, plant height, harvest index and 1000-grain weight low GCV and PCV values were observed. Number of productive tillers per plant and spike length recorded moderate value of PCV and low value of GCV. High estimate of heritability in narrow sense was recorded for number of productive tillers per plant, biological yield per plant, harvest index and grain yield per plant, while it was moderate for days to ear emergence, days to maturity, plant height, flag leaf area, spike length, grains per spike and low heritability were recorded for 1000-grain weight. High heritability coupled with high genetic advance in per cent of mean was recorded for biological yield per plant and grain yield per plant. Grain yield per plant exhibited highly significant and positive association with 1000-grain weight, harvest index, biological yield per plant, grains per spike, number of productive tillers per plant and days to maturity.


2015 ◽  
Vol 4 (2) ◽  
pp. 193-205 ◽  
Author(s):  
Imran Khan ◽  
Fida Mohammad ◽  
Fahim Ullah Khan

Development of superior crop varieties is the prime objectives of all plant breeding programs. To determine genetic variability, heritability and genetic advance, 24 elite bread wheat lines were planted in randomized complete block design with three replications at the University of Agriculture, Peshawar under rainfed conditions. Data were recorded on days to heading, days to maturity, plant height (cm), flag leaf area (cm-2), spike length (cm), grain yield (kg ha-1), biological yield (kg ha-1), 1000 grain weight (g), grains spike-1, grain weight spike-1(g), and harvest index (%). Analysis of variance revealed significant differences among genotypes for all the traits studied. Broad sense heritability was high for days to heading (0.89), grain weight spike-1(0.61g), spike length (0.70 cm), 1000-grain weight (0.62g), grain yield (0.78 kg ha-1) and harvest index (0.62%); and was moderate for days to maturity (0.52), plant height (0.38 cm), and grains spike-1 (0.49), while low heritability was estimated for spike weight (0.25g), flag leaf area (0.28 cm-2) and biological yield (0.25 kg ha-1). The values of genetic advance for days to heading, days to maturity, plant height, spike length, grains spike-1, grain weight spike-1, 1000-grain weight, grain yield, biological yield, flag leaf area, and harvest index were; 5.47, 1.88, 4.01, 6.42, 0.16, 5.02, 0.71, 418.83, 379.64, 2.89 and 3.92, respectively. Genotype PR 105 surpassed all other genotypes in grain yield (3144.33 kg ha-1) and hence it can be recommended for rainfed area. DOI: http://dx.doi.org/10.3126/ije.v4i2.12637 International Journal of Environment Vol.4(2) 2015: 193-205


2012 ◽  
Vol 4 (4) ◽  
pp. 110-114 ◽  
Author(s):  
Gulzar S. SANGHERA ◽  
Subhash C. KASHYAP

The F3 population of eighteen different cross combinations using five local and seven exotic genotypes was used to study the genetic parameters, heritability, correlation and path coefficients for fourteen quantitative characters under temperate conditions. The selected progenies showed highly significant difference for most of the agro-morphological characters. Comparatively high phenotypic coefficients of variation were observed for all the character than genotypic coefficient variation. High heritability (%) was recorded for days to 50% flowering (96%) followed by days to maturity (95%) and grain yield per plant (84%). High genetic advance were observed for grain yield (47%) followed by biological yield/plant (27%) and harvest index (25%). Days to 50% flowering was positively and significantly correlated with days to maturity, grain length with LB ratio flag leaf length with grain breadth and panicle length with grain breadth at genotypic level. Path coefficient analysis revealed that harvest index and biological yield has highest direct effect on yield followed by days to maturity and number of grain per panicle. Biological yield per plant has highest indirect effect on yield via days to flowering followed by grain weight via biological yield per plant, grain breadth via days to 50 % flowering and flag leaf length via biological yield per plant. Therefore, information on the genetic parameters such as coefficient of variation, heritability, genetic advance and the influence of environment on the expression of these characters will help the breeder to evolve suitable cultivars within a short time for hill ecologies.


2018 ◽  
Vol 6 (1) ◽  
pp. 01-07 ◽  
Author(s):  
Amir Sohail ◽  
Hidayatur Rahman ◽  
Farhat Ullah ◽  
Syed M.A. Shah ◽  
Tanvir Burni ◽  
...  

This research was carried out to check genetic variability, heritability and genetic advance in 11 F4 bread wheat (Triticum aestivum L.) genotypes (10 F4 lines and one check) in a randomized block design with three replications at the University of Agriculture Peshawar, Pakistan during 2015-16. Data was/were taken on parameters such as days to heading (days), plant height (cm), flag leaf area (cm2), spike length (cm), grain weight spike-1 (g), 1000-grain weight (g), grain yield plant-1 (g), biological yield plant-1 (g)and harvest index (%). The statistically significant difference(s) was/were detected for the investigated traits.  The high magnitude of heritability (˃0.62) was noted for all parameters except spike length (0.57) which was moderate. Low expected genetic advance was recorded for days to heading (3.90%) and spike length (8.13%), moderate expected genetic advance was observed for plant height (9.95%), grain weight spike-1 (11.54%) and 1000 grain weight (13.41%), while high expected genetic advance was noted for flag leaf area (24.72%), grain yield plant-1 (20.45%), biological yield plant-1 (23.64%) and harvest index (24%). Grain yield plant-1 was non-significantly and positively correlated with days to heading (rG = 0.19NS and rP = 0.07 NS),  plant height (rG = 0.30 NS and rP = 0.26 NS), flag leaf area (rG = 0.25 NS and rP = 0.18 NS), spike length (rG = 0.01 NS and rP = 0.07 NS), grain weight spike-1 (rG = 0.28 NS and rP = 0.22 NS) and 1000-grain weight (rG = 0.02 NS and rP = 0.07 NS) at both genotypic and phenotypic levels. While significantly and positively correlated with biological yield plant-1 (rG = 0.34* and rP = 0.33*) and harvest index (rG = 0.58** and rP = 0.66**) at both genotypic and phenotypic levels. High heritability showed that these traits are under genetic control and single plant selection could be started in F5 generation. The strong correlation of grain yield plant-1 with the mentioned traits showed that grain yield could be indirectly improved by improving these traits.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
PUNIT KUMAR ◽  
VICHITRA KUMAR ARYA ◽  
PRADEEP KUMAR ◽  
LOKENDRA KUMAR ◽  
JOGENDRA SINGH

A study on genetic variability, heritability and genetic advance for seed yield and component traits was made in 40 genotypes of riceduring kharif 2011-2012 at SHIATS, Allahabad. The analysis of variance showed highly significant differences among the treatments for all the 13 traits under study.The genotypes namely CN 1446-5-8-17-1-MLD4 and CR 2706 recorded highest mean performance for panicles per hill and grain yield. The highest genotypic and phenotypic variances (VG and VP) were recorded for spikelets per panicle (3595.78 and 3642.41) followed by biological yield (355.72 and 360.62) and plant height (231.48 and 234.35).High heritability (broad sense) coupled with high genetic advance was observed for plant height, flag leaf length, panicles per hill, tillers per hill, days to maturity, spikelet’s per panicle, biological yield, harvest index, 1000 grain weight and grain yield, indicating that selection will be effective based on these traits because they were under the influence of additive and additive x additive type of gene action. Highest coefficient of variation (PCV and GCV) was recorded for tillers per hill (18.42% and 17.23%), panicle per hill (19.76 % and 18.68%), spikelet’s per panicle (34.30 and34.07 %), biological yield (28.31 % and 28.12 %), 1000 grain weight (15.57 % and 15 31 %) and grain yield (46.66% and 23.54 %), indicating that these traits are under the major influence of genetic control, therefore the above mentioned traits contributed maximum to higher grain yield compared to other traits, indicating grain yield improvement through the associated traits.


Author(s):  
Pramod Noatia ◽  
Abhinav Sao ◽  
Ajay Tiwari ◽  
S. K. Nair ◽  
Deepak Gauraha

The present study was undertaken to study the extent of genetic variability, character association and path analysis in 53 irrigated late duration breeding lines for 12 quantitative and 10 quality parameters. Analysis of variance revealed the presence of significant variation among the breeding lines for all the characters except for total tillers per plant, effective tillers per plant, spikelet fertility percentage and grain yield per plant. The highest magnitude of PCV and GCV were displayed by grain yield per plant followed by harvest index, filled spikelet per panicle and 1000 seed weight. The greater extent of heritability in broad sense were recorded for days to maturity, days to 50% flowering, 1000 seed weight, plant height, total spikelet per panicle, kernel length, kernel L:B ratio, grain length, head rice recovery percentage, amylose content, hulling and milling percentage. However, high heritability coupled with high genetic advance as percent of mean were displayed by plant height, number of spikelet per panicle, filled spikelet per panicle,1000 seed weight, kernel length, kernel L:B ratio, grain length, head rice recovery percentage and amylose content. Grain yield per plant exhibited positive significant correlation with harvest index, effective tillers per plant, 1000 seed weight, spikelet fertility %, days to maturity and days to 50% flowering. Path analysis revealed direct effect on grain yield were exerted by days to 50% flowering followed by harvest index, 1000 seed weight, total tillers per plant, number of spikelet per plant, effective tillers per plant and plant height indicating their importance in rice breeding programs.


2016 ◽  
Vol 8 (1) ◽  
pp. 350-357
Author(s):  
Pradeep Kumar ◽  
Gyanendra Singh ◽  
Sarvan Kumar ◽  
Anuj Kumar ◽  
Ashish Ojha

Genetic analysis was carried out in 55 genotypes (10 parents and 45 F1s) through diallel mating design excluding reciprocals in bread wheat. Analysis of variance showed appreciable variability among the breeding material for almost all the traits under study. The highest value of phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) was found for flag leaf area (PCV=18.82, GCV=17.74), biological yield (PCV=12.98, GCV=11.70), grain yield (PCV=11.90, GCV=10.39) and harvest index (PCV=10.39, GCV=10.05). Highest heritability with highest genetic advance was estimated for flag leaf area (h2=52.24, GA=34.64), biological yield (h2=15.04, GA=21.71), harvest index (h2=18.19, GA=20.01), peduncle length (h2=31.72, GA=15.96) and spikelets per spike (h2=34.92, GA=12.96), therefore selection will be effective based on these traits. Grain yield was found significantly correlated (at <1% level of significance) with productive tillers (gr=0.3283**, pr=0.4347**), spike length (gr=0.1959**, pr=0.2203**), spikelets per spike (gr=0.4342**, pr=0.3813**), grains per spike (gr=0.7188**, pr=0.4918**), biological yield (gr=0.6101**, pr=0.6616**), harvest index (gr=0.3518**, pr=0.3227**) and thousand grain weight (gr=0.5232**, pr=0.3673**). Similarly path coefficient analysis estimates for biological yield (g=1.0524, p=1.0554), harvesting index (g=0.8862, p=0.8291), thousand grain weight (g=0.0588, p=0.0269), grains per spike (g=0.0496, p=0.0074), spike length (g=0.0209, p=0.0289), days to maturity (g=0.0142, p=0.0127), productive tillers (g=0.0186, p=0.0147), peduncle length (g=0.0123, p=0.0157), days to 50% flowering (g=0.0093, p=0.0072) and plant height (g=0.0042, p=0.0020) showed high positive direct effects on grain yield indicating that due importance should be given to these traits during selection for high yield.


2014 ◽  
Vol 11 (2) ◽  
pp. 17-32
Author(s):  
Sandeep Kumar Soni ◽  
VK Yadav ◽  
N Pratap ◽  
VP Bhadana ◽  
T Ram

Forty-five rice lines comprising of thirty derived hybrid lines obtained from ten tropical Japonica, three Indica and two national checks viz. Pusa Basmati 1121 and Sarjoo-52 were evaluated for selection parameters, yield contributing components and genetic divergence. Fifteen quantitative and three qualitative traits were studied from experimentation with randomized block design during Kharif 2011. The phenotypic coefficient of variability was higher than genotypic coefficient of variability for all of the traits. The highest estimates of broad sense heritability coupled with genetic advance in per cent of mean was recorded for spikelets per panicle, plant height followed by L:B ratio, spikelets per panicle, grains per panicle, biological yield per plant, flag leaf area, days to 50% flowering, plant height which might be due to the additive nature of gene action. Such results indicated that these traits will be reliable for the effective selection. Highly positive and significant correlation was observed at both phenotypic and genotypic level between grain yield per plant and biological yield per plant, followed by panicle bearing tillers per plant, spikelet fertility, panicle length, 1000- grain weight, grains per panicle, panicle weight, flag leaf length, spikelet per panicle, flag leaf area, kernel length, flag leaf width, days to 50% flowering, and harvest index. This relationship reflected that grain yield and aforesaid economic traits can be increased simultaneously in breeding programme to develop high yielding Indica as well as Tropical Japonica rice varieties. Whole genotypes grouped in 8 non-overlapping clusters exhibited maximum genetic diversity between clusters III i.e., TJ- 64897 × NDR-359, TJ-64897 × CSR36, TJ-64897 × PB-1 and VIII i.e., TJ-11010 × NDR359, TJ-11010 × PB-1, TJ-16081 × NDR-359, TJ-16081 × PB-1. These clusters also stand for early days to flowering, short slender, second highest harvest index and panicle bearing tillers per plant, spikelets per panicle, grains per panicle, spikelet fertility, 1000- grain weight, long bold slender, biological yield per plant, and grain yield per plant. These genotypes showing higher mean performance for aforesaid traits can be exploited for enhancing hybrid vigour of desired New Plant Type with higher number of panicle bearing tillers per plant, spikelet per panicle and grains per spike in Indica as well as Tropical Japonica rice varieties for achieving higher yield. DOI: http://dx.doi.org/10.3329/sja.v11i2.18399 SAARC J. Agri., 11(2): 17-32 (2013)


Author(s):  
Ashutosh Kumar ◽  
Avinash Kumar ◽  
N. K. Singh ◽  
Rajesh Kumar ◽  
S. K. Singh ◽  
...  

In view to overcome the major problem of ‘hidden hunger’ mainly caused by micronutrient deficiency, breeding for micronutrient enriched staple food crops is important. In developing countries, iron and zinc deficiencies are reported to be major health risk factor causing a high mortality rate. So, for overcoming these nutritional deficiencies through genetic improvement, F2 population of two rice crosses obtained by crossing diverse parents for micronutrients (mainly, Fe and Zn) were evaluated using randomised complete block design  during  Kharif, 2019  to study the relationship between different traits and to study the estimates of direct and indirect effect. Among the F2 population of cross-I, grain yield per plant exhibited significant and positive association with seeds per panicle, tillers per plant, flag leaf area, harvest index, test weight, days to 50% flowering and days to maturity while negative and significant correlation with canopy temperature. For cross-II, grain yield per plant exhibited significant and positive association with seeds per panicle, tillers per plant, plant height, flag leaf area, SPAD value, harvest index, test weight and days to maturity while significant and negative correlation with grain Zn content, grain Fe content and canopy temperature. Hence, selection for the traits showing positive and significant association with grain yield in both the crosses will be rewarding. Highest positive direct effect on yield was shown by harvest index in cross-I. So, selection based on harvest index for grain yield per plant would be the most effective strategy for improvement of grain yield. No direct positive or negative effect of grain Fe and Zn content on yield was found.


Author(s):  
Puneet Kumar ◽  
Y. P. S. Solanki ◽  
Vikram Singh ◽  
. Kiran

The experiment was conducted with 60 genotypes of bread wheat. These genotypes were grown in RBD using three replications during Rabi 2016-17 at Research Area of Wheat and Barley Section, Department of Genetics and Plant Breeding, CCS HAU, Hisar. To study the variability, correlation and path analysis, data were recorded for yield and its component traits i.e. days to 50% heading, days to anthesis, grain growth rate at 14, 21, 28 days (mg/g/day), plant height (cm), number of effective tillers/meter, flag leaf length (cm), flag leaf width (cm), flag leaf area (cm2), spike length (cm), number of spikelets per spike, number of grains per spike, 1000 grain weight (g), grain yield per plot (g), biological yield/plot (g) and harvest index (%). ANOVA showed highly significant differences among the genotypes for all the traits indicating adequacy of material and the traits studied for further assessment of genetic variability parameters. High value of GCV and PCV was recorded for grain yield per plot, followed by biological yield, indicating greater amount of variability among the genotypes. Highest heritability was recorded for days to 50% heading, followed by days to anthesis. Highly significant and positive association was perceived between grain yield and tillers per meter, plant height, number of grains per spike, number of spikelets per spike, flag leaf area, grain growth rate at 14, 21 and 28 days after anthesis, spike length, 1000 grain weight, biological yield and harvest index. The high direct effects were recorded for biological yield, harvest index, flag leaf breadth, number of effective tillers per meter and 1000 grain weight, in order.


Sign in / Sign up

Export Citation Format

Share Document