Influence of lubricant and coolant fluid on the cutting force in small-increment planing

2013 ◽  
Vol 33 (2) ◽  
pp. 84-85 ◽  
Author(s):  
A. V. Popov ◽  
A. V. Dugin
Author(s):  
Márcio Araújo ◽  
Valter E. Beal ◽  
Armando Sá Ribeiro Júnior ◽  
Luis Antônio Gonçalves Junior

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Aditya Nugraha ◽  
Masri Bin Ardin

PVDF sensor is a sensor that is often used to measure force, strain, vibration and heat. In this study, PVDF sensors with surface polarization are used to detect cutting forces on the machine. The PVDF sensor that has been polarized on the surface is placed in the chuck part of the engine. Measuring instrumen for testing and calibrating PVDF sensors is oscilloscope with increased loading and reduced axial and tangential directions. After the calibration process, the PVDF sensor was used to measure cutting force on drilling machine, and then the results were compared with the PCB piezotronics force sensor. The PVDF sensor output signal is measured and studied for its voltage using an oscilloscope, where the output signal is compared to the weight given to the PVDF sensor. From the results of these tests indicate that the maximum deviation in axial loading is 0.32V while the tangential loading is 0.31VKeywords. PVDF sensor, Surface polarization, Drilling machine, Cutting force


Author(s):  
S.V. Povorov ◽  
D.V. Egorov ◽  
D.S. Volgin

The change in cutting force in the cutting process of roll-formed section in shaped dies-knife guillotine is studied. It is established that to calculate the cutting force in shaped guillotine, one can use formulas to determine the cutting force of sheet blank on conventional straight knives guillotine.


2014 ◽  
Vol 39 (2) ◽  
pp. 213-216 ◽  
Author(s):  
Kui CHEN ◽  
Song-lin SUN ◽  
Jun-zheng LI ◽  
Qian TAN ◽  
Ming-tao XIAO ◽  
...  

2019 ◽  
Vol 13 (2) ◽  
pp. 181-188
Author(s):  
Meng Liu ◽  
Guohe Li ◽  
Xueli Zhao ◽  
Xiaole Qi ◽  
Shanshan Zhao

Background: Finite element simulation has become an important method for the mechanism research of metal machining in recent years. Objective: To study the cutting mechanism of hardened 45 steel (45HRC), and improve the processing efficiency and quality. Methods: A 3D oblique finite element model of traditional turning of hardened 45 steel based on ABAQUS was established in this paper. The feasibility of the finite element model was verified by experiment, and the influence of cutting parameters on cutting force was predicted by single factor experiment and orthogonal experiment based on simulation. Finally, the empirical formula of cutting force was fitted by MATLAB. Besides, a lot of patents on 3D finite element simulation for metal machining were studied. Results: The results show that the 3D oblique finite element model can predict three direction cutting force, the 3D chip shape, and other variables of metal machining and the prediction errors of three direction cutting force are 5%, 9.02%, and 8.56%. The results of single factor experiment and orthogonal experiment are in good agreement with similar research, which shows that the model can meet the needs for engineering application. Besides, the empirical formula and the prediction results of cutting force are helpful for the parameters optimization and tool design. Conclusion: A 3D oblique finite element model of traditional turning of hardened 45 steel is established, based on ABAQUS, and the validation is carried out by comparing with experiment.


Sign in / Sign up

Export Citation Format

Share Document