India’s Strategy to Procure Lithium to be a Leading Lithium-Ion Battery Manufacturer

2021 ◽  
Vol 11 (5) ◽  
pp. 143-148
Author(s):  
Shubham Gandhi ◽  
Drumil Newaskar ◽  
Rohan Apte ◽  
Preet Aligave

Lithium is one of the foremost valuable metal which is widely used for manufacturing batteries and also has other uses in solar panels, ceramics, glasses and pharmaceuticals. Lithium is third most abundant element after hydrogen and helium but the most lithium deposits are only in Bolivia (21 million tons), Argentina (17 million tons), Chile (9 million tons), Australia (6.8 million tons), China (4.5 million tons). Bolivia, Argentina, Chile forms so called lithium triangle. Due to depleting reserves of fossil fuels and its harmful impact on the environment has forced the globe to shift to Lithium-ion batteries which is much eco-friendlier alternative. India’s push for electric vehicles (EV) may cause a considerable change in its energy security priorities, with securing lithium supplies, a key material for creating batteries, becoming as important as buying oil and gas fields overseas. India doesn't have enough lithium reserves for manufacturing lithium-ion batteries. The majority electric vehicles within the country run on imported batteries, mostly from China. At present a lithium-ion battery accounts for 40% of the overall cost of an electrical vehicle. Khanij Bidesh Pvt Ltd is a venture firm of three central public sector enterprises namely National Aluminum Company (Nalco), Hindustan Copper Ltd (HCL), Mineral Exploration Company Ltd (MECL). The KABIL would do identification, acquisition, exploration, development, mining and processing of strategic minerals overseas for commercial use and meeting country’s requirement of those minerals. The mission is to not allow India to fall in a very vulnerable position with a probable threat of supply squeeze as went on within the case of petroleum, with India being the world’s third largest oil importer and to amass cobalt and lithium mines in addition on get into purchase agreements of those minerals. This may help in achieving resource security with regard to strategic minerals.

2018 ◽  
Vol 115 (28) ◽  
pp. 7266-7271 ◽  
Author(s):  
Xiao-Guang Yang ◽  
Guangsheng Zhang ◽  
Shanhai Ge ◽  
Chao-Yang Wang

Fast charging is a key enabler of mainstream adoption of electric vehicles (EVs). None of today’s EVs can withstand fast charging in cold or even cool temperatures due to the risk of lithium plating. Efforts to enable fast charging are hampered by the trade-off nature of a lithium-ion battery: Improving low-temperature fast charging capability usually comes with sacrificing cell durability. Here, we present a controllable cell structure to break this trade-off and enable lithium plating-free (LPF) fast charging. Further, the LPF cell gives rise to a unified charging practice independent of ambient temperature, offering a platform for the development of battery materials without temperature restrictions. We demonstrate a 9.5 Ah 170 Wh/kg LPF cell that can be charged to 80% state of charge in 15 min even at −50 °C (beyond cell operation limit). Further, the LPF cell sustains 4,500 cycles of 3.5-C charging in 0 °C with <20% capacity loss, which is a 90× boost of life compared with a baseline conventional cell, and equivalent to >12 y and >280,000 miles of EV lifetime under this extreme usage condition, i.e., 3.5-C or 15-min fast charging at freezing temperatures.


2012 ◽  
Vol 271-272 ◽  
pp. 182-185 ◽  
Author(s):  
Yang Li ◽  
Hua Qing Xie ◽  
Jing Li

The tractive lithium ion batteries were gradually become the main energy provider for the Electric vehicles (EVs) and hybrid electric vehicles (HEVs) in recent years. However, it was urgent and important to remove the heat generated from the tractive lithium ion batteries during charge-discharge processes for its future application in EVs and HEVs. In this study, the heat release and indirect liquid cooling of tractive lithium ion batteries was investigated. The temperatures of batteries at different positions were recorded under different discharge rates and environmental temperatures. The results showed that indirect liquid cooling could effectively decrease the temperatures of battery. The decreasing ratios of temperature at different positions of battery were varied from 1.9% to 8.1%. It presented preferable cooling effects at the positive and negative of battery.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 387
Author(s):  
Martin Choux ◽  
Eduard Marti Bigorra ◽  
Ilya Tyapin

The rapidly growing deployment of Electric Vehicles (EV) put strong demands on the development of Lithium-Ion Batteries (LIBs) but also into its dismantling process, a necessary step for circular economy. The aim of this study is therefore to develop an autonomous task planner for the dismantling of EV Lithium-Ion Battery pack to a module level through the design and implementation of a computer vision system. This research contributes to moving closer towards fully automated EV battery robotic dismantling, an inevitable step for a sustainable world transition to an electric economy. For the proposed task planner the main functions consist in identifying LIB components and their locations, in creating a feasible dismantling plan, and lastly in moving the robot to the detected dismantling positions. Results show that the proposed method has measurement errors lower than 5 mm. In addition, the system is able to perform all the steps in the order and with a total average time of 34 s. The computer vision, robotics and battery disassembly have been successfully unified, resulting in a designed and tested task planner well suited for product with large variations and uncertainties.


2020 ◽  
Author(s):  
Xiaosong Hu ◽  
Kai Zhang ◽  
Kailong Liu ◽  
Xianke Lin ◽  
Satadru Dey ◽  
...  

Lithium-ion batteries have become the mainstream energy storage solution for many applications, such as electric vehicles and smart grids. However, various faults in a lithium-ion battery system (LIBS) can potentially cause performance degradation and severe safety issues. Developing advanced fault diagnosis technologies is becoming increasingly critical for the safe operation of LIBS. This paper provides a comprehensive review of fault mechanisms, fault features, and fault diagnosis of various faults in LIBS, including internal battery faults, sensor faults, and actuator faults. Future trends in the development of fault diagnosis technologies for a safer battery system are presented and discussed.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Lithium-ion batteries are being implemented in different large-scale applications, including aerospace and electric vehicles. For these utilizations, it is essential to improve battery cells with a great life cycle because a battery substitute is costly. For their implementation in real applications, lithium-ion battery cells undergo extension during the course of discharging and charging. To avoid disconnection among battery pack ingredients and deformity during cycling, compacting force is exerted to battery packs in electric vehicles. This research used a mechanical design feature that can address these issues. This investigation exhibits a comprehensive description of the experimental setup that can be used for battery testing under pressure to consider lithium-ion batteries’ safety, which could be employed in electrified transportation. Besides, this investigation strives to demonstrate how exterior force affects a lithium-ion battery cell’s performance and behavior corresponding to static exterior force by monitoring the applied pressure at the dissimilar state of charge. Electrochemical impedance spectroscopy was used as the primary technique for this research. It was concluded that the profiles of the achieved spectrums from the experiments seem entirely dissimilar in comparison with the cases without external pressure. By employing electrochemical impedance spectroscopy, it was noticed that the pure ohmic resistance, which is related to ion transport resistance of the separator, could substantially result in the corresponding resistance increase.


2018 ◽  
Author(s):  
Purim Ladpli ◽  
Raphael Nardari ◽  
Fotis Kopsaftopoulos ◽  
Fu-Kuo Chang

This work proposes and analyzes a structurally-integrated lithium-ion battery concept. The multifunctional energy storage composite (MESC) structures developed here encapsulate lithium-ion battery materials inside high-strength carbon-fiber composites and use interlocking polymer rivets to stabilize the electrode layer stack mechanically. These rivets enable load transfer between battery layers, allowing them to store electrical energy while also contributing to the structural load carrying performance, without any modifications to the battery chemistry. The design rationale, fabrication processes, and experimental mechano-electrical characterization of first-generation MESCs are discussed. Experimental results indicate that the MESCs offer electrochemically equivalent performance to the baseline chemistry, despite the disruptive design change. The mechanically-functionalized battery stack’s contribution is assessed via quasi-static three-point bending tests, with results showing significantly improved mechanical stiffness and strength over traditional pouch cells. The rivets minimize interlayer shear movement of the electrode stack, thus allowing it to maintain electrochemical functionalities while carrying mechanical bending. While minimal load application can cause permanent deformation of pouch cells, MESCs maintain their structural integrity and energy-storage capabilities after realistic repeated loading. The results obtained demonstrate the mechanical robustness of MESCs, which allows them to be fabricated as energy-storing structures for electric vehicles and other applications.


Author(s):  
Wesley Dose ◽  
Jędrzej Krzysztof Morzy ◽  
Amoghavarsha Mahadevegowda ◽  
Caterina Ducati ◽  
Clare P. Grey ◽  
...  

The transition towards electric vehicles and more sustainable transportation is dependent on lithium-ion battery (LIB) performance. Ni-rich layered transition metal oxides, such as NMC811 (LiNi0.8Mn0.1Co0.1O2), are promising cathode candidates for...


2018 ◽  
Vol 144 ◽  
pp. 04020 ◽  
Author(s):  
Ayush Sisodia ◽  
Jonathan Monteiro

The use of Lithium-ion batteries in the automobile sector has expanded drastically in the recent years. The foreseen increment of lithium to power electric and hybrid electric vehicles has provoked specialists to analyze the long term credibility of lithium as a transportation asset. To give a better picture of future accessibility, this paper exhibits a life cycle model for the key procedures and materials associated with the electric vehicle lithium-ion battery life cycle, on a worldwide scale. This model tracks the flow of lithium and energy sources from extraction, to generation, to on road utilization, and the role of reusing and scrapping. This life cycle evaluation model is the initial phase in building up an examination model for the lithium ion battery production that would enable the policymakers to survey the future importance of lithium battery recycling, and when in time setting up a reusing foundation be made necessary.


Author(s):  
Suchitra D ◽  
Rajarajeswari R ◽  
Dhruv Singh Bhati

AbstractAn accumulator or battery is an energy storage cramped in an adaptable stockade. Lithium-ion batteries are commonly used in hybrid electric vehicles (HEV) and battery operated electric vehicles (BOEV) due to its eco-friendliness and increased efficiency. To maintain lithium batteries in the safe operating region and also to perform tasks like cell balancing, preventing thermal runaway, maintain the state of health, an effective battery management system (BMS) is required. The BMS should also communicate effectively between host devices and battery packs. This paper proposes a reliable, modular and cost-efficient BMS, which will emanate an alert when a fault occurs and thus preventing the battery from damage. An efficient control strategy has been proposed for charging and discharging of the battery pack. The thermal analysis of the lithium-ion battery used in this work is simulated using battery design studio (BDS) with the inclusion of a self-discharging effect. The proposed hardware setup also provides a provision for on-board diagnosis (OBD) and logging in the accumulator management system (AMS) to constantly monitor the cell parameters like voltage, current, and temperature. The live data display of AMS working is also shown during abnormal and normal conditions. Also, an attempt is made to use the design of proposed AMS for HEV.


Author(s):  
Liu Yun ◽  
Jayne Sandoval ◽  
Jian Zhang ◽  
Liang Gao ◽  
Akhil Garg ◽  
...  

With the increase of production of electrical vehicles (EVs) and battery packs, lithium ion batteries inconsistency problem has drawn much attention. Lithium ion battery imbalance phenomenon exists during three different stages of life cycle. First stage is premanufacturing of battery pack i.e., during the design, the cells of similar performance need to be clustered to improve the performance of pack. Second is during the use of battery pack in EVs, batteries equalization is necessary. In the third stage, clustering of spent lithium ion batteries for reuse is also an important problem because of the great recycling challenge of lithium batteries. In this work, several clustering and equalization methods are compared and summarized for different stages. The methods are divided into the traditional methods and intelligent methods. The work also proposes experimental combined clustering analysis for new lithium-ion battery packs formation with improved electrochemical performance for electric vehicles. Experiments were conducted by dismantling of pack and measurement of capacity, voltage, and internal resistance data. Clustering analysis based on self-organizing map (SOM) neural networks is then applied on the measured data to form clusters of battery packs. The validation results conclude that the battery packs formed from the clustering analysis have higher electrochemical performance than randomly selected ones. In addition, a comprehensive discussion was carried out.


Sign in / Sign up

Export Citation Format

Share Document