2002 ◽  
Vol 66 (2) ◽  
pp. 464 ◽  
Author(s):  
M. Camps Arbestain ◽  
M. E. Barreal ◽  
F. Macías
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 703
Author(s):  
Ximena Huérfano ◽  
José-María Estavillo ◽  
Miren K. Duñabeitia ◽  
María-Begoña González-Moro ◽  
Carmen González-Murua ◽  
...  

Improving fertilizer nitrogen (N) use efficiency is essential to increase crop productivity and avoid environmental damage. This study was conducted during four crop cycles of winter wheat under humid Mediterranean conditions (Araba, northern Spain). The effects of N-fertilization splitting and the application of the nitrification inhibitors (NIs) 3,4-dimethylpyrazole phosphate (DMPP) and 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) as strategies to improve grain quality were examined. The hypothesis of this study was to test if the partial ammonium nutrition and the reduction of fertilizer losses presumably induced by the application of NIs can modify the grain gliadin and glutenin protein contents and the breadmaking quality (dough rheological properties). Among both NIs assayed, only DMPP showed a slight effect of decreasing the omega gliadin fraction, following splitting either two or three times, although this effect was dependent on the year and was not reflected in terms of dough extensibility. The slight decreases observed in grain quality in terms of dough strength and glutenin content induced by DMPP suggest that DMPSA is more promising in terms of maintaining grain quality. Nonetheless, these poor effects exerted by NI application on grain quality parameters did not lead to changes in the quality parameters defining the flour aptitudes for breadmaking.


Author(s):  
Raúl Fernández-Ramón ◽  
Jorge J. Gaitán-Valdizán ◽  
Lara Sánchez-Bilbao ◽  
José L. Martín-Varillas ◽  
David Martínez-López ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Medelin Ocejo ◽  
Beatriz Oporto ◽  
José Luis Lavín ◽  
Ana Hurtado

AbstractCampylobacter, a leading cause of gastroenteritis in humans, asymptomatically colonises the intestinal tract of a wide range of animals.Although antimicrobial treatment is restricted to severe cases, the increase of antimicrobial resistance (AMR) is a concern. Considering the significant contribution of ruminants as reservoirs of resistant Campylobacter, Illumina whole-genome sequencing was used to characterise the mechanisms of AMR in Campylobacter jejuni and Campylobacter coli recovered from beef cattle, dairy cattle, and sheep in northern Spain. Genome analysis showed extensive genetic diversity that clearly separated both species. Resistance genotypes were identified by screening assembled sequences with BLASTn and ABRicate, and additional sequence alignments were performed to search for frameshift mutations and gene modifications. A high correlation was observed between phenotypic resistance to a given antimicrobial and the presence of the corresponding known resistance genes. Detailed sequence analysis allowed us to detect the recently described mosaic tet(O/M/O) gene in one C. coli, describe possible new alleles of blaOXA-61-like genes, and decipher the genetic context of aminoglycoside resistance genes, as well as the plasmid/chromosomal location of the different AMR genes and their implication for resistance spread. Updated resistance gene databases and detailed analysis of the matched open reading frames are needed to avoid errors when using WGS-based analysis pipelines for AMR detection in the absence of phenotypic data.


2021 ◽  
Vol 11 (11) ◽  
pp. 5027
Author(s):  
Irene Dominguez-Moñino ◽  
Valme Jurado ◽  
Miguel Angel Rogerio-Candelera ◽  
Bernardo Hermosin ◽  
Cesareo Saiz-Jimenez

The aerobiology of caves in Southern Spain possesses special characteristics, different from caves located in Northern Spain. Previous studies demonstrated the influence of outdoor air on caves in the north and the existence of two different patterns, depending on the season. In summer there is an abundance of Ascomycota, whereas in winter Basidiomycota predominates, which are related to the periods of stagnation and ventilation, respectively. In caves in Southern Spain the presence of airborne Basidiomycota is scarce and Ascomycota represents the main group of fungi widely distributed across the caves in all seasons. The most characteristic features were the abundant presence of entomopathogenic fungi (Beauveria bassiana, Parengyodontium album, Pochonia chlamydosporia, Leptobacillium symbioticum, Leptobacillium leptobactrum) and Cladosporium cladosporioides in Cueva del Tesoro, Cueva de Ardales and Gruta de las Maravillas. However, the presence of yeasts of the genera Cutaneotrichosporon, Trichosporon, Cryptococcus, Naganishia, Cystobasidium, Microstroma and Phragmotaenium was exclusive to Gruta de las Maravillas. Fungal hazard in the three show caves were determined using an ecological indicator based on the concentration of spores in cave air.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Roger Eritja ◽  
Sarah Delacour-Estrella ◽  
Ignacio Ruiz-Arrondo ◽  
Mikel A. González ◽  
Carlos Barceló ◽  
...  

Abstract Background Active surveillance aimed at the early detection of invasive mosquito species is usually focused on seaports and airports as points of entry, and along road networks as dispersion paths. In a number of cases, however, the first detections of colonizing populations are made by citizens, either because the species has already moved beyond the implemented active surveillance sites or because there is no surveillance in place. This was the case of the first detection in 2018 of the Asian bush mosquito, Aedes japonicus, in Asturias (northern Spain) by the citizen science platform Mosquito Alert. Methods The collaboration between Mosquito Alert, the Ministry of Health, local authorities and academic researchers resulted in a multi-source surveillance combining active field sampling with broader temporal and spatial citizen-sourced data, resulting in a more flexible and efficient surveillance strategy. Results Between 2018 and 2020, the joint efforts of administrative bodies, academic teams and citizen-sourced data led to the discovery of this species in northern regions of Spain such as Cantabria and the Basque Country. This raised the estimated area of occurrence of Ae. japonicus from < 900 km2 in 2018 to > 7000 km2 in 2020. Conclusions This population cluster is geographically isolated from any other population in Europe, which raises questions about its origin, path of introduction and dispersal means, while also highlighting the need to enhance surveillance systems by closely combining crowd-sourced surveillance with public health and mosquito control agencies’ efforts, from local to continental scales. This multi-actor approach for surveillance (either passive and active) shows high potential efficiency in the surveillance of other invasive mosquito species, and specifically the major vector Aedes aegypti which is already present in some parts of Europe. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document