Tissue hypoxia has been established as a master regulator for alternative splicing, with substantial clinical consequences and possibilities for gene therapy targeting

2021 ◽  
Author(s):  
Moataz Dowaidar

Tissue hypoxia has been found as a master regulator of alternative splicing, which can have significant clinical implications. Hypoxia-elicited AS is more common in the setting of various cancer hallmarks than other illnesses, owing to the fact that hypoxia and AS are intensively explored in cancer. However, an increasing number of hypoxia-induced AS episodes have been linked to a variety of clinical conditions, including neurological and cardiovascular disorders. Hypoxia-induced AS, of course, has its own set of markers with prognostic and therapeutic implications. Targeted regulation of hypoxia signaling with the objective of modulating hypoxia-driven AS is of great interest in some cancers. In order to design acceptable therapeutic paradigms, future research will be necessary to unravel the proper molecular pathways. Although some of the discovered molecular targets appear to have therapeutic potential, more in-vivo research is required.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 938-938
Author(s):  
Shujun Liu ◽  
Lai Chu Wu ◽  
Jiuxia Pang ◽  
Ramasamy Santhanam ◽  
Sebastian Schwind ◽  
...  

Abstract Abstract 938 KIT is a receptor tyrosine kinase (RTK) and its aberrant activities resulting from protein overexpression and/or activating mutations are associated with a number of malignancies including core binding factor (CBF) AML [e.g., patients with t(8;21) or inv(16) or molecular equivalent RUNX1/RUNX1T1 or CBFB/MYH11, respectively]. RTK inhibitors (e.g. PKC412) have been shown to suppress aberrant KIT activity and delay tumor growth, but they are active only on distinct types of KIT mutations (KITmut). Furthermore, resistance to these inhibitors, as a result of secondary mutations or KIT overexpression, is emerging. Thus, we hypothesize that direct inhibition of KIT gene transcription may be a valuable therapeutic approach to override aberrant KIT expression and activity. Here, we described the regulatory and functional role of Sp1/NFkB-miR29b feedback loop in KIT-driven leukemia that can be targeted pharmacologically. Applying chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA) to RUNX1/RUNX1T1-positive Kasumi-1 cells, we demonstrated that while, the Sp1/NFkB complex was enriched on KIT promoter and acted as gene transactivator thereby leading to KIT overexpression, Sp1/NFkB recruited HDAC1 and HDAC3 to miR29b regulatory region thereby epigenetically repressing miR29b. This microRNA, when expressed, targeted Sp1 and eventually decreased Sp1/NFkB-mediated gene transactivation, including that of KIT. In agreement with these, we showed that when Sp1, NFkB and HDAC1 were transiently overexpressed in Kasumi-1 cells, increased KIT expression and decreased miR29b transcription occurred. In contrast, siRNA knockdown of Sp1, NFkB and HDAC1 augmented miR29b level and decreased KIT transcription. Moreover, ectopic miR29b expression impaired Sp1/NFkB repressor complex on the promoter of endogenous miR29b, thereby resulting in re-expression of the endogenous microRNA and further inhibition of Sp1/NFkB-dependent KIT transcription. Importantly, the activity of Sp1/NFkB/HDACs complex can also be pharmacologically modulated leading to restored miR29b transcription and abrogated KIT expression. We showed that pharmacologic interference with Sp1/NFkB/HDACs using their respective inhibitors, such as bortezomib (0, 6, 20, 60 and 100nM for Sp1 and NFkB), mithramycin A (150 and 300ng/ml for Sp1), bay 11-7082 (3μM for NFkB) and OSU-HDAC42 (1μM for HDAC), upregulated miR29b at early time point (6 hours) and decreased Sp1 and in turn KIT expression in KIT overexpression cell lines (e.g., Kasumi-1) and AML patient blasts. EMSA and ChIP assay demonstrated that bortezomib or HDAC42-mediated KIT repression and miR29b upregulation occurred through the dissociation of Sp1/NFkB complex from the corresponding promoter. To further investigate the therapeutic potential of targeting KIT over-expression in leukemia, we stably expressed KIT wild type (KITwt) or KITmut (D816V) in FDC-P1 cell line (murine non-tumorigenic cells derived from myeloid precursors), and we evidenced that both KITwt and KITmut promoted cell proliferation that was overcome by bortezomib in clonogenic assay. In in vivo study, when NOD/SCID mice were engrafted with FDC-P1/KITmut cells (5×106/mouse), they developed significant splenomegaly and marrow blast infiltration through KIT overexpression. When leukemia-carrying mice were treated with bortezomib (1mg/kg) for 48 hours, we observed an obvious increase of endogenous miR29b expression and a significant reduction of KIT expression. Leukemic mice that received 1mg/kg of bortezomib twice/week for 3 weeks starting on day 21 after engraftment (n=5 mice/group) showed no evidence of splenomegaly and had a significantly longer median survival [59 days (twice/week) vs 28 days (vehicle-treated), p=0.0036], compared to vehicle-treated mice that instead showed massive splenomegaly. Cytospin of marrow and histopathology of spleen and liver showed that vehicle-treated mice displayed extensive blast infiltration that was instead absent in bortezomib-treated mice. Altogether, our study revealed a previously unrecognized protein-microRNA regulatory network whose imbalance contributes to KIT-driven leukemia. As the aberrant activity of this network is pharmacologically targetable, this discovery may be quickly translated into the clinic as a novel therapeutic approach for KIT-driven AML and other malignancies. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Sorabh Sharma ◽  
Rajeev Taliyan

The worldwide prevalence of movement disorders is increasing day by day. Parkinson’s disease (PD) is the most common movement disorder. In general, the clinical manifestations of PD result from dysfunction of the basal ganglia. Although the exact underlying mechanisms leading to neural cell death in this disease remains unknown, the genetic causes are often established. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the neurological disease conditions. The acetylation and deacetylation of histone proteins are carried out by opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. In the recent past, studies with HDAC inhibitors result in beneficial effects in bothin vivoandin vitromodels of PD. Various clinical trials have also been initiated to investigate the possible therapeutic potential of HDAC inhibitors in patients suffering from PD. The possible mechanisms assigned for these neuroprotective actions of HDAC inhibitors involve transcriptional activation of neuronal survival genes and maintenance of histone acetylation homeostasis, both of which have been shown to be dysregulated in PD. In this review, the authors have discussed the putative role of HDAC inhibitors in PD and associated abnormalities and suggest new directions for future research in PD.


2021 ◽  
Vol 67 (2) ◽  
pp. 161-165
Author(s):  
Yun Dai ◽  
Guangming Yang ◽  
Lie Yang ◽  
Li Jiang ◽  
Guohua Zheng ◽  
...  

Forkhead box (FOX) transcription factors regulate the development of several human cancers. However, the role and therapeutic potential of FOXA1 in gastric cancer is still largely unexplored. The results showed a significant (P < 0.05) upregulation of FOXA1 in gastric cancer tissues and cell lines. Silencing of FOXA1 in gastric cells significantly (P < 0.05) decreased their viability through induction of apoptosis. The induction of apoptosis was associated with upregulation of Bax and downregulation of Bcl-2. Additionally, FOXA1 silencing caused activation of caspase-3 and 9 with no apparent effects on the expression of caspase-8 suggestive of intrinsic apoptosis. The transwell cell invasion revealed significant (P < 0.05) decline of cell invasion of gastric cancer cells upon FOXA1 silencing. The FOXA1 knockdown further inhibited the in vivo tumor growth suggestive of its therapeutic potential. Taken together, the findings of the present revealed that FOXA1 regulates the proliferation and development of gastric cancer and may exhibit therapeutic implications in gastric cancer treatment.


2020 ◽  
Vol 245 (2) ◽  
pp. 146-154 ◽  
Author(s):  
Alina Sadaf ◽  
Charles T Quinn

Oxidative stress is an important contributor to the pathophysiology of sickle cell disease. The pathways involved are complex and interlinked. L-glutamine is an amino acid with myriad roles in the body, including the synthesis of antioxidants, such as reduced glutathione and the cofactors NAD(H) and NADP(H), as well as nitric oxide—so it has therapeutic potential as an antioxidant. However, the relative impact of L-glutamine on the redox environment in red blood cells in sickle cell disease is not fully understood, and there are few therapeutic trials in sickle cell disease. Following the FDA approval of L-glutamine for sickle cell disease, more research is still needed to understand its clinical effects and role in therapy. Impact statement L-glutamine has been recently approved by the FDA for the prevention of acute complications in sickle cell disease (SCD). However, there are many gaps in our understanding of the biologic role of glutamine and its therapeutic implications in SCD. This review summarizes the pre-clinical and clinical evidence that can inform clinical decision-making and future research on glutamine therapy in SCD patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min Wang ◽  
Ziyue Zhou ◽  
Simin Li ◽  
Wei Zhu ◽  
Xianda Hu

Butterflies represent one of the largest animal groups on Earth, yet antimicrobial peptides (AMPs) of this group are less studied in comparison with their moth counterparts. This study employed an integrated bioinformatics approach to survey natural AMPs from publicly available genomic datasets. Numerous AMPs, including cecropins, defensins, and moricins, were identified and subsequently used as templates for the design of a series of synthetic AMPs that mimicked the naturally occurring sequences. Despite differing biological effects among the various sequences, the synthetic AMPs exhibited potent antibacterial and antifungal activities in vitro and in vivo, without inducing hemolysis, which implied their therapeutic potential in infectious diseases. Electron and confocal fluorescence microscopies revealed that the AMPs induced distinct morphological and biophysical changes on microbial cell membranes and nuclei, suggesting that the antimicrobial effects were related to a mechanism of membrane penetration and nucleic acid binding by the peptides. In conclusion, this study not only offers insights into butterfly AMPs but also provides a practical strategy for high-throughput natural AMP discoveries that will have implications for future research in this area.


2020 ◽  
Vol 14 ◽  
Author(s):  
Shuuichi Miyakawa ◽  
Hiroyuki Sakuma ◽  
Dnyaneshwar Warude ◽  
Satomi Asanuma ◽  
Naoto Arimura ◽  
...  

Progranulin (PGRN) haploinsufficiency associated with loss-of-function mutations in the granulin gene causes frontotemporal dementia (FTD). This suggests that increasing PGRN levels could have promising therapeutic implications for patients carrying GRN mutations. In this study, we explored the therapeutic potential of sortilin1 (SORT1), a clearance receptor of PGRN, by generating and characterizing monoclonal antibodies against SORT1. Anti-SORT1 monoclonal antibodies were generated by immunizing Sort1 knockout mice with SORT1 protein. The antibodies were classified into 7 epitope bins based on their competitive binding to the SORT1 protein and further defined by epitope bin-dependent characteristics, including SORT1-PGRN blocking, SORT1 down-regulation, and binding to human and mouse SORT1. We identified a positive correlation between PGRN up-regulation and SORT1 down-regulation. Furthermore, we also characterized K1-67 antibody via SORT1 down-regulation and binding to mouse SORT1 in vivo and confirmed that K1-67 significantly up-regulated PGRN levels in plasma and brain interstitial fluid of mice. These data indicate that SORT1 down-regulation is a key mechanism in increasing PGRN levels via anti-SORT1 antibodies and suggest that SORT1 is a potential target to correct PGRN reduction, such as that in patients with FTD caused by GRN mutation.


2015 ◽  
Vol 2015 ◽  
pp. 1-29 ◽  
Author(s):  
Muhammad Ali Hashmi ◽  
Afsar Khan ◽  
Muhammad Hanif ◽  
Umar Farooq ◽  
Shagufta Perveen

Aim of the Review.To grasp the fragmented information available on the botany, traditional uses, phytochemistry, pharmacology, and toxicology ofOlea europaeato explore its therapeutic potential and future research opportunities.Material and Methods.All the available information onO. europaeawas collected via electronic search (using Pubmed, Scirus, Google Scholar, and Web of Science) and a library search.Results.Ethnomedical uses ofO. europaeaare recorded throughout the world where it has been used to treat various ailments. Phytochemical research had led to the isolation of flavonoids, secoiridoids, iridoids, flavanones, biophenols, triterpenes, benzoic acid derivatives, isochromans, and other classes of secondary metabolites fromO. europaea. The plant materials and isolated components have shown a wide spectrum ofin vitroandin vivopharmacological activities like antidiabetic, anticonvulsant, antioxidant, anti-inflammatory, immunomodulatory, analgesic, antimicrobial, antiviral, antihypertensive, anticancer, antihyperglycemic, antinociceptive, gastroprotective, and wound healing activities.Conclusions. O. europaeaemerged as a good source of traditional medicine for the treatment of various ailments. The outcomes of phytochemical and pharmacological studies reported in this review will further expand its existing therapeutic potential and provide a convincing support to its future clinical use in modern medicine.


2021 ◽  
Vol 22 (23) ◽  
pp. 12969
Author(s):  
Iris Ribitsch ◽  
Andrea Bileck ◽  
Monika Egerbacher ◽  
Simone Gabner ◽  
Rupert L. Mayer ◽  
...  

Fetal cartilage fully regenerates following injury, while in adult mammals cartilage injury leads to osteoarthritis (OA). Thus, in this study, we compared the in vivo injury response of fetal and adult ovine articular cartilage histologically and proteomically to identify key factors of fetal regeneration. In addition, we compared the secretome of fetal ovine mesenchymal stem cells (MSCs) in vitro with injured fetal cartilage to identify potential MSC-derived therapeutic factors. Cartilage injury caused massive cellular changes in the synovial membrane, with macrophages dominating the fetal, and neutrophils the adult, synovial cellular infiltrate. Correspondingly, proteomics revealed differential regulation of pro- and anti-inflammatory mediators and growth-factors between adult and fetal joints. Neutrophil-related proteins and acute phase proteins were the two major upregulated protein groups in adult compared to fetal cartilage following injury. In contrast, several immunomodulating proteins and growth factors were expressed significantly higher in the fetus than the adult. Comparison of the in vitro MSCs proteome with the in vivo fetal regenerative signature revealed shared upregulation of 17 proteins, suggesting their therapeutic potential. Biomimicry of the fetal paracrine signature to reprogram macrophages and modulate inflammation could be an important future research direction for developing novel therapeutics.


Author(s):  
Chrystalla Antoniou ◽  
Jonathon Hull

Abstract Purpose of Review The olive tree (Olea europaea L.) has featured as a significant part of medicinal history, used to treat a variety of ailments within folk medicine. The Mediterranean diet, which is rich in olive products, is testament to Olea europaeas positive effects on health, associated with reduced incidences of cancer and cardiovascular disease. This review aims to summarise the current literature regarding the therapeutic potential of Olea europaea products in cancer, detailing the possible compounds responsible for its chemotherapeutic effects. Recent Findings Much of the existing research has focused on the use of cell culture models of disease, demonstrating Olea europaea extracts, and specific compounds within these extracts, have efficacy in a range of in vitro and in vivo cancer models. The source of Olea europaeas cytotoxicity is yet to be fully defined; however, compounds such as oleuropein and verbascoside have independent cytotoxic effects on animal models of cancer. Summary Initial results from animal models are promising but need to be translated to a clinical setting. Treatments utilising these compounds are likely to be well tolerated and represent a promising direction for future research.


2018 ◽  
Vol 46 (02) ◽  
pp. 261-297 ◽  
Author(s):  
Shiyao Hua ◽  
Yiwei Zhang ◽  
Jiayue Liu ◽  
Lin Dong ◽  
Jun Huang ◽  
...  

Smilax glabra (SG) Roxb., a well-known traditional Chinese medicine, has been extensively used worldwide for its marked pharmacological activities for treating syphilitic poisoned sores, limb hypertonicity, morbid leucorrhea, eczema pruritus, strangury due to heat, carbuncle toxin, and many other human ailments. Approximately 200 chemical compounds have been isolated from SG Roxb., and the major components have been determined to be flavonoids and flavonoid glycosides, phenolic acids, and steroids. Among these active compounds, the effects of astilbin, which is used as a quality control marker to determine the quality of SG Roxb., have been widely investigated. Based on in vivo and in vitro studies, the primary active components of SG Roxb. possess various pharmacological activities, such as cytotoxic, anti-inflammatory and immune-modulatory effects, anti-oxidant, hepatoprotective, antiviral, antibacterial, and cardiovascular system protective activities. However, an extensive study to determine the relationship between the chemical compositions and pharmacological effects of SG Roxb. has not been conducted and is worth of our study. Improving the means of utilizing the effects of SG is crucial. The present paper reviews the ethnopharmacology, phytochemistry, and pharmacology of SG Roxb. and assesses its ethnopharmacological use in order to explore its therapeutic potential for future research.


Sign in / Sign up

Export Citation Format

Share Document