scholarly journals A century of transformation: Fire regime transitions from 1919 to 2019 in southeastern British Columbia, Canada

2021 ◽  
Author(s):  
Jennifer N Baron ◽  
Sarah E. Gergel ◽  
Paul F. Hessburg ◽  
Lori D. Daniels

The past 100 years marks a transition between pre-colonial and modern era fire regimes, which provides crucial context for understanding future wildfire behavior. Using the greatest depth of digitized fire events in Canada, we identify distinct phases of wildfire regimes from 1919 to 2019 by evaluating changes in mapped fire perimeters (>20-ha) across the East Kootenay forest region (including the southern Rocky Mountain Trench), British Columbia (BC). We detect transitions in annual number of fires, burned area, and fire size; explore the roles of lightning- and human-caused fires in driving these transitions; and quantify departures from historical fire frequency at the regional level. We found that, relative to historical fire frequency, fire exclusion created a significant fire deficit across 89% of the flammable landscape. Fire was active from 1919 to 1940 with frequent and large fire events, but the regime was already altered by a century of colonization. Fire activity decreased after 1940, coinciding with effective fire suppression influenced by a mild climatic period. After 2003, the combined effects of fire exclusion and accelerated climate change fueled a shift in fire regimes of various forest types, with increases in area burned and mean fire size driven by lightning.

2007 ◽  
Vol 13 (3) ◽  
pp. 177 ◽  
Author(s):  
Owen Price ◽  
Bryan Baker

A nine year fire history for the Darwin region was created from Landsat imagery, and examined to describe the fire regime across the region. 43% of the region burned each year, and approximately one quarter of the fires occur in the late dry season, which is lower than most other studied areas. Freehold land, which covers 35% of the greater Darwin region, has 20% long-unburnt land. In contrast, most publicly owned and Aboriginal owned land has very high fire frequency (60-70% per year), and only 5% long unburnt. It seems that much of the Freehold land is managed for fire suppression, while the common land is burnt either to protect the Freehold or by pyromaniacs. Generalized Linear Modelling among a random sample of points revealed that fire frequency is higher among large blocks of savannah vegetation, and at greater distances from mangrove vegetation and roads. This suggests that various kinds of fire break can be used to manage fire in the region. The overall fire frequency in the Darwin region is probably too high and is having a negative impact on wildlife. However, the relatively low proportion of late dry season fires means the regime is probably not as bad as in some other regions. The management of fire is ad-hoc and strongly influenced by tenure. There needs to be a clear statement of regional fire targets and a strategy to achieve these. Continuation of the fire mapping is an essential component of achieving the targets.


2015 ◽  
Vol 24 (5) ◽  
pp. 712 ◽  
Author(s):  
Michael J. Lawes ◽  
Brett P. Murphy ◽  
Alaric Fisher ◽  
John C. Z. Woinarski ◽  
Andrew C. Edwards ◽  
...  

Small mammal (<2 kg) numbers have declined dramatically in northern Australia in recent decades. Fire regimes, characterised by frequent, extensive, late-season wildfires, are implicated in this decline. Here, we compare the effect of fire extent, in conjunction with fire frequency, season and spatial heterogeneity (patchiness) of the burnt area, on mammal declines in Kakadu National Park over a recent decadal period. Fire extent – an index incorporating fire size and fire frequency – was the best predictor of mammal declines, and was superior to the proportion of the surrounding area burnt and fire patchiness. Point-based fire frequency, a commonly used index for characterising fire effects, was a weak predictor of declines. Small-scale burns affected small mammals least of all. Crucially, the most important aspects of fire regimes that are associated with declines are spatial ones; extensive fires (at scales larger than the home ranges of small mammals) are the most detrimental, indicating that small mammals may not easily escape the effects of large and less patchy fires. Notwithstanding considerable management effort, the current fire regime in this large conservation reserve is detrimental to the native mammal fauna, and more targeted management is required to reduce fire size.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wesley Brookes ◽  
Lori D. Daniels ◽  
Kelsey Copes-Gerbitz ◽  
Jennifer N. Baron ◽  
Allan L. Carroll

In the 2017 and 2018, 2.55 million hectares burned across British Columbia, Canada, including unanticipated large and high-severity fires in many dry forests. To transform forest and fire management to achieve resilience to future megafires requires improved understanding historical fire frequency, severity, and spatial patterns. Our dendroecological reconstructions of 35 plots in a 161-hectare study area in a dry Douglas-fir forest revealed historical fires that burned at a wide range of frequencies and severities at both the plot- and study-area scales. The 23 fires between 1619 and 1943 burned at intervals of 10–30 years, primarily at low- to moderate-severity that scarred trees but generated few cohorts. In contrast, current fire-free intervals of 70–180 years exceed historical maximum intervals. Of the six widespread fires from 1790 to 1905, the 1863 fire affected 86% of plots and was moderate in severity with patches of higher severity that generated cohorts at fine scales only. These results indicate the severity of fires varied at fine spatial scales, and offer little support for the common assertion that periodic, high-severity, stand-initiating events were a component of the mixed-severity fire regime in these forest types. Many studies consider fires in the late 1800s relatively severe because they generated new cohorts of trees, and thus, emphasize the importance of high-severity fires in a mixed-severity fire regime. In our study area, the most widespread and severe fire was not a stand-initiating fire. Rather, the post-1863 cohorts persisted due disruption of the fire regime in the twentieth century when land-use shifted from Indigenous fire stewardship and early European settler fires to fire exclusion and suppression. In absence of low- to moderate-severity fires, contemporary forests are dense with closed canopies that are vulnerable to high-severity fire. Future management should reduce forest densities and to restore stand- and landscape-level heterogeneity and increase forest resilience. The timing and size of repeat treatments such as thinning of subcanopy trees and prescribed burning, including Indigenous fire stewardship, can be guided by our refined understanding of the mixed-severity fire regime that was historically dominated by low- to moderate-severity fires in this dry forest ecosystem.


2016 ◽  
Vol 25 (9) ◽  
pp. 922 ◽  
Author(s):  
Facundo José Oddi ◽  
Luciana Ghermandi

Fire is one of the most important disturbances in terrestrial ecosystems and has major ecological and socioeconomic impacts. Fire regime describes the variation of individual fire events in time and space. Few studies have characterised the fire regime in grasslands in spite of the importance of these ecosystems. The aim of this study was to describe the recent fire regime (from 1973 to 2011) of north-western Patagonian grasslands in terms of seasonality, frequency and burned area. Our study area covered 560 000 ha and we used a remote sensing approach combined with statistics obtained from operational databases. Fires occur during the summer in 2 of every 3 years with a frequency of 2.7 fires per year and a mean size of 823 ha. Fire size distribution is characterised by many small fires and few large ones which would respond to a distribution from the power law family. Eighty per cent of the total area affected by fire was burned in the span of a few years, which were also widespread fire years in forests and woodlands of north-western Patagonia. This work contributes to general knowledge about fire regimes in grasslands and we expect that our results will serve as a reference to further fire regime research.


2019 ◽  
Vol 28 (2) ◽  
pp. 138 ◽  
Author(s):  
Brandon M. Collins ◽  
Jay D. Miller ◽  
Eric E. Knapp ◽  
David B. Sapsis

Most studies of fire-regime changes in western North American forests rely on a reference period that pre-dates Euro-American settlement. Less is known about fire-regime changes relative to the early onset of major change agents, i.e. fire suppression and timber harvesting. We digitised ledgers that contained over 18000 individual fire records from 1911 through 1924 (early suppression period). We performed analyses comparing a subset of these fire records, largely in mixed-conifer forests, to similar records from 2002 through 2015 (contemporary period). Mapped ignition frequencies indicated similar geographic patterns for lightning-caused fires between periods, but notable shifts in certain areas for human-caused fires. There was no statistical difference in annual number of human-caused fires between the early suppression and contemporary time periods. However, there was a major shift in the distribution of burned area across fire size classes. Fires &gt;12145ha accounted for 0–6% of total burned area in the early suppression period, and 53–73% in the contemporary period. Also, both the total number and percentage of fires &gt;2024ha occurred significantly earlier in the year in the contemporary period. These shifts are likely driven by large-scale changes in fuel loads and continuity, and possibly exacerbated by climatic warming.


2019 ◽  
Vol 28 (12) ◽  
pp. 927 ◽  
Author(s):  
Jeanne Portier ◽  
Sylvie Gauthier ◽  
Yves Bergeron

In Canada, recent catastrophic wildfire events raised concern from governments and communities. As climate change is expected to increase fire activity in boreal forests, the need for a better understanding of fire regimes is becoming urgent. This study addresses the 1972–2015 spatial distributions of fire cycles, mean fire size (FireSz) and mean fire occurrence (mean annual number of fires per 100000ha, FireOcc) in eastern Canada. The objectives were to determine (1) the spatial variability of fire-regime attributes, (2) the capacity of FireSz and FireOcc to distinguish homogeneous fire zones and (3) the environmental factors driving FireSz and FireOcc, with some emphasis on lightning strikes. Fire cycles, FireSz and FireOcc greatly varied throughout the study area. Even within homogeneous fire zones, FireSz and FireOcc were highly variable. FireSz was controlled by moisture content in deep layers of the soil and by surficial deposits, whereas FireOcc was controlled by moisture content in top layers of the soil and by relief. The lack of a relationship between FireOcc and lightning-strike density suggested that the limiting effect of lightning-strike density on FireOcc could be operating only under certain circumstances, when interacting with other environmental factors.


1990 ◽  
Vol 20 (2) ◽  
pp. 219-232 ◽  
Author(s):  
James S. Clark

Long-term fire, climate, and vegetation data were used together with simulation models to estimate the effects of 20th century climate change and fire suppression on fire regime and organic-matter accumulation in mixed-conifer stands of Itasca State Park, northwestern Minnesota. Spatial and temporal patterns of fire occurrence and forest composition over the last 150 years determined by stratigraphic charcoal, fire-scar, tree-ring, and pollen analyses in separate studies provide evidence for vegetation and fire relationships. Water balances constructed from temperature and precipitation data collected since 1840 were used to model fire probability and intensity of burn before fire suppression which began in 1910. Existing patterns of biomass accumulation in forest-floor, herb, shrub, and tree components were compared with fire history and topographic variability to provide a spatial perspective on fire effects. Simulation models used these relationships to estimate (i) how accumulation of organic matter had changed through the past under the different fire regimes that prevailed on different topographic aspects, (ii) the changes brought about by fire suppression in 1910, and (iii) the fire regimes and their effects that would have prevailed since fire suppression with the warm–dry climate of the 20th century. Humus, litter, shrubs, and herb cover were less abundant and more variable spatially and temporally before fire suppression. Spatial variability in forest-floor organic matter, which resulted from different fire frequencies in different vegetation and topographic settings before fire suppression, was largely gone by 1920 as a result of fire suppression. Had fire suppression not been instituted in 1910, fire frequency would have increased by 20–40% in the 20th century because of warmer and drier conditions. Forest-floor oganic matter would have been largely depleted by frequent and severe fires exposing mineral soils, particularly during the drought years of the 1930s. Herb biomass would have increased, shrubs would have been more variable, and tree seedling establishment would have been substantially altered. Time required for buildup of fuels limits the extent to which increased moisture deficits increase fire frequency.


2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.


2007 ◽  
Vol 363 (1501) ◽  
pp. 2351-2356 ◽  
Author(s):  
Anders Granström ◽  
Mats Niklasson

Fire, being both a natural and cultural phenomenon, presents problems in disentangling the historical effect of humans from that of climate change. Here, we investigate the potential impact of humans on boreal fire regimes from a perspective of fuels, ignitions and culture. Two ways for a low technology culture to impact the fire regime are as follows: (i) by altering the number of ignitions and their spatial distribution and timing and (ii) by hindering fire spread. Different cultures should be expected to have quite different impacts on the fire regimes. In northern Fennoscandia, there is evidence for fire regime changes associated with the following: a reindeer herding culture associated with few ignitions above the natural; an era of cattle husbandry with dramatically increased ignitions and somewhat higher fire frequency; and a timber exploitation era with decreasing fire sizes and diminishing fire frequency. In other regions of the boreal zone, such schemes can look quite different, but we suggest that a close look at the resource extraction and land use of different cultures should be part of any analysis of past fire regimes.


2019 ◽  
pp. 1034-1048
Author(s):  
John Isaac Molefe

Despite its role and relevance in environmental management at all scales the use of fire has been contentious. The absence of information on fire parameters compounds the situation. This study derives fire parameter information for Botswana by analyzing MODIS fire data for (2001-2012), using conditional statements, and cluster mapping in ArcGIS. The study also related the fire information to other variables to examine how they interact with fire. The results of the study indicates that over the 12 year period the burned area has exhibited an upward trend. It has also shown that most of the fire in the country occur over the late dry season when the fires are potentially destructive. A south-north transect of fire frequency is observed, accompanied by an inverse relationship between frequency and intensity. Of all the factors, rainfall (0.638) and biomass(NDVI) (0.355) were the most significant contributors to the fire activity. The study demonstrated the utility of the MODIS fire data in characterizing the fire regime of the country and thus contribute to the policy process.


Sign in / Sign up

Export Citation Format

Share Document