scholarly journals The Metalog Distributions: Virtually Unlimited Shape Flexibility with Bayesian Updating in Closed Form

2021 ◽  
Author(s):  
Thomas W. Keelin ◽  
Ronald A. Howard

Users of probability distributions frequently need to convert data (empirical, simulated, or elicited) into a continuous probability distribution and to update that distribution when new data becomes available. Often, it is unclear which traditional probability distribution(s) to use, fitting to data is laborious and unsatisfactory, little insight emerges, and updating with Bayes rule is impractical. Here we offer an alternative -- a family of continuous probability distributions, fitting methods, and tools that: provide sufficient shape and boundedness flexibility to closely match virtually any probability distribution and most data sets; involve a single set of simple closed-form equations; stimulate potentially valuable insights when applied to empirical data; are simply fit to data with ordinary least squares; are easy to combine (as when weighting the opinion of multiple experts), and, under certain conditions, are easily updated in closed form according to Bayes rule when new data becomes available. The Bayesian updating method is presented in a way that is readily understandable as a fisherman updates his catch probabilities when changing the river on which he fishes. While metalog applications have been shown to improve decision-making, the methods and results herein are broadly applicable to virtually any use of continuous probability in any field of human endeavor. Diverse data sets may be explored and modeled in these new ways with freely available spreadsheets and tools.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248873
Author(s):  
Majdah Badr ◽  
Muhammad Ijaz

The paper addresses a new four-parameter probability distribution called the Exponentiated Exponential Burr XII or abbreviated as EE-BXII. We derive various statistical properties in addition to the parameter estimation, moments, and asymptotic confidence bounds. We estimate the precision of the maximum likelihood estimators via a simulation study. Furthermore, the utility of the proposed distribution is evaluated by using two lifetime data sets and the results are compared with other existing probability distributions. The results clarify that the proposed distribution provides a better fit to these data sets as compared to the existing probability distributions.


MAUSAM ◽  
2021 ◽  
Vol 61 (2) ◽  
pp. 225-228
Author(s):  
K. SEETHARAM

In this paper, the Pearsonian system of curves were fitted to the monthly rainfalls from January to December, in addition to the seasonal as well as annual rainfalls totalling to 14 data sets of the period 1957-2005 with 49 years of duration for the station Gangtok to determine the probability distribution function of these data sets. The study indicated that the monthly rainfall of July and summer monsoon seasonal rainfall did not fit in to any of the Pearsonian system of curves, but the monthly rainfalls of other months and the annual rainfalls of Gangtok station indicated to fit into Pearsonian type-I distribution which in other words is an uniform distribution. Anderson-Darling test was applied to for null hypothesis. The test indicated the acceptance of null-hypothesis. The statistics of the data sets and their probability distributions are discussed in this paper.


2004 ◽  
Vol 95 (2) ◽  
pp. 449-458 ◽  
Author(s):  
Paul W. Mielke ◽  
Janis E. Johnston ◽  
Kenneth J. Berry

Permutation tests are based on all possible arrangements of observed data sets. Consequently, such tests yield exact probability values obtained from discrete probability distributions. An exact nondirectional method to combine independent probability values that obey discrete probability distributions is introduced. The exact method is the discrete analog to Fisher's classical method for combining probability values from independent continuous probability distributions. If the combination of probability values includes even one probability value that obeys a sparse discrete probability distribution, then Fisher's classical method may be grossly inadequate.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Timothy M Wolock ◽  
Seth Flaxman ◽  
Kathryn A Risher ◽  
Tawanda Dadirai ◽  
Simon Gregson ◽  
...  

The age dynamics of sexual partnership formation determine patterns of sexually transmitted disease transmission and have long been a focus of researchers studying human immunodeficiency virus. Data on self-reported sexual partner age distributions are available from a variety of sources. We sought to explore statistical models that accurately predict the distribution of sexual partner ages over age and sex. We identified which probability distributions and outcome specifications best captured variation in partner age and quantified the benefits of modelling these data using distributional regression. We found that distributional regression with a sinh-arcsinh distribution replicated observed partner age distributions most accurately across three geographically diverse data sets. This framework can be extended with well-known hierarchical modelling tools and can help improve estimates of sexual age-mixing dynamics.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huda M. Alshanbari ◽  
Muhammad Ijaz ◽  
Syed Muhammad Asim ◽  
Abd Al-Aziz Hosni El-Bagoury ◽  
Javid Gani Dar

The rationale of the paper is to present a new probability distribution that can model both the monotonic and nonmonotonic hazard rate shapes and to increase their flexibility among other probability distributions available in the literature. The proposed probability distribution is called the New Weighted Lomax (NWL) distribution. Various statistical properties have been studied including with the estimation of the unknown parameters. To achieve the basic objectives, applications of NWL are presented by means of two real-life data sets as well as a simulated data. It is verified that NWL performs well in both monotonic and nonmonotonic hazard rate function than the Lomax (L), Power Lomax (PL), Exponential Lomax (EL), and Weibull Lomax (WL) distribution.


Genetics ◽  
2003 ◽  
Vol 163 (3) ◽  
pp. 1177-1191 ◽  
Author(s):  
Gregory A Wilson ◽  
Bruce Rannala

Abstract A new Bayesian method that uses individual multilocus genotypes to estimate rates of recent immigration (over the last several generations) among populations is presented. The method also estimates the posterior probability distributions of individual immigrant ancestries, population allele frequencies, population inbreeding coefficients, and other parameters of potential interest. The method is implemented in a computer program that relies on Markov chain Monte Carlo techniques to carry out the estimation of posterior probabilities. The program can be used with allozyme, microsatellite, RFLP, SNP, and other kinds of genotype data. We relax several assumptions of early methods for detecting recent immigrants, using genotype data; most significantly, we allow genotype frequencies to deviate from Hardy-Weinberg equilibrium proportions within populations. The program is demonstrated by applying it to two recently published microsatellite data sets for populations of the plant species Centaurea corymbosa and the gray wolf species Canis lupus. A computer simulation study suggests that the program can provide highly accurate estimates of migration rates and individual migrant ancestries, given sufficient genetic differentiation among populations and sufficient numbers of marker loci.


Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 184-204
Author(s):  
Carlos Barrera-Causil ◽  
Juan Carlos Correa ◽  
Andrew Zamecnik ◽  
Francisco Torres-Avilés ◽  
Fernando Marmolejo-Ramos

Expert knowledge elicitation (EKE) aims at obtaining individual representations of experts’ beliefs and render them in the form of probability distributions or functions. In many cases the elicited distributions differ and the challenge in Bayesian inference is then to find ways to reconcile discrepant elicited prior distributions. This paper proposes the parallel analysis of clusters of prior distributions through a hierarchical method for clustering distributions and that can be readily extended to functional data. The proposed method consists of (i) transforming the infinite-dimensional problem into a finite-dimensional one, (ii) using the Hellinger distance to compute the distances between curves and thus (iii) obtaining a hierarchical clustering structure. In a simulation study the proposed method was compared to k-means and agglomerative nesting algorithms and the results showed that the proposed method outperformed those algorithms. Finally, the proposed method is illustrated through an EKE experiment and other functional data sets.


2011 ◽  
Vol 84 (8) ◽  
Author(s):  
Tracy Holsclaw ◽  
Ujjaini Alam ◽  
Bruno Sansó ◽  
Herbie Lee ◽  
Katrin Heitmann ◽  
...  

2011 ◽  
Vol 09 (supp01) ◽  
pp. 39-47
Author(s):  
ALESSIA ALLEVI ◽  
MARIA BONDANI ◽  
ALESSANDRA ANDREONI

We present the experimental reconstruction of the Wigner function of some optical states. The method is based on direct intensity measurements by non-ideal photodetectors operated in the linear regime. The signal state is mixed at a beam-splitter with a set of coherent probes of known complex amplitudes and the probability distribution of the detected photons is measured. The Wigner function is given by a suitable sum of these probability distributions measured for different values of the probe. For comparison, the same data are analyzed to obtain the number distributions and the Wigner functions for photons.


2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Vitthal Anwat ◽  
Pramodkumar Hire ◽  
Uttam Pawar ◽  
Rajendra Gunjal

Flood Frequency Analysis (FFA) method was introduced by Fuller in 1914 to understand the magnitude and frequency of floods. The present study is carried out using the two most widely accepted probability distributions for FFA in the world namely, Gumbel Extreme Value type I (GEVI) and Log Pearson type III (LP-III). The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) methods were used to select the most suitable probability distribution at sites in the Damanganga Basin. Moreover, discharges were estimated for various return periods using GEVI and LP-III. The recurrence interval of the largest peak flood on record (Qmax) is 107 years (at Nanipalsan) and 146 years (at Ozarkhed) as per LP-III. Flood Frequency Curves (FFC) specifies that LP-III is the best-fitted probability distribution for FFA of the Damanganga Basin. Therefore, estimated discharges and return periods by LP-III probability distribution are more reliable and can be used for designing hydraulic structures.


Sign in / Sign up

Export Citation Format

Share Document