scholarly journals Using Particle Swarm Optimization as Pathfinding Strategy in a Space with Obstacles

2021 ◽  
Author(s):  
David

Particle swarm optimization (PSO) is a search algorithm based on stochastic and population-based adaptive optimization. In this paper, a pathfinding strategy is proposed to improve the efficiency of path planning for a broad range of applications. This study aims to investigate the effect of PSO parameters (numbers of particle, weight constant, particle constant, and global constant) on algorithm performance to give solution paths. Increasing the PSO parameters makes the swarm move faster to the target point but takes a long time to converge because of too many random movements, and vice versa. From a variety of simulations with different parameters, the PSO algorithm is proven to be able to provide a solution path in a space with obstacles.

Author(s):  
Ravichander Janapati ◽  
Ch. Balaswamy ◽  
K. Soundararajan

Localization is the key research area in wireless sensor networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao bound (CRB). This censoring scheme  can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper  Distributed localization of wireless sensor networksis proposed using PSO with best censoring technique using CRB. Proposed method shows better results in terms of position accuracy, latency and complexity.  


Author(s):  
A. Safari ◽  
K. H. Hajikolaei ◽  
H. G. Lemu ◽  
G. G. Wang

Although metaheuristic techniques have recently become popular in optimization, still they are not suitable for computationally expensive real-world problems, specifically when the problems have many input variables. Among these techniques, particle swarm optimization (PSO) is one of the most well-known population-based nature-inspired algorithms which can intelligently search huge spaces of possible arrangements of design variables to solve various complex problems. The candidate solutions and accordingly the required number of evaluated particles, however, dramatically increase with the number of design variables or the dimension of the problem. This study is a major modification to an original PSO for using all previously evaluated points aiming to increase the computational efficiency. For this purpose, a metamodeling methodology appropriate for so-called high-dimensional, expensive, black-box (HEB) problems is used to efficiently generate an approximate function from all particles calculated during the optimization process. Following the metamodel construction, a term named metamodeling acceleration is added to the velocity update formula in the original PSO algorithm using the minimum of the metamodel. The proposed strategy is called the metamodel guided particle swarm optimization (MGPSO) algorithm. The superior performance of the approach is compared with original PSO using several benchmark problems with different numbers of variables. The developed algorithm is then used to optimize the aerodynamic design of a gas turbine compressor blade airfoil as a challenging HEB problem. The simulation results illustrated the MGPSO’s capability to achieve more accurate results with a considerably smaller number of function evaluations.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Waqas Haider Bangyal ◽  
Abdul Hameed ◽  
Wael Alosaimi ◽  
Hashem Alyami

Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique used to search for food with the intrinsic manner of bee swarming. PSO is widely used to solve the diverse problems of optimization. Initialization of population is a critical factor in the PSO algorithm, which considerably influences the diversity and convergence during the process of PSO. Quasirandom sequences are useful for initializing the population to improve the diversity and convergence, rather than applying the random distribution for initialization. The performance of PSO is expanded in this paper to make it appropriate for the optimization problem by introducing a new initialization technique named WELL with the help of low-discrepancy sequence. To solve the optimization problems in large-dimensional search spaces, the proposed solution is termed as WE-PSO. The suggested solution has been verified on fifteen well-known unimodal and multimodal benchmark test problems extensively used in the literature, Moreover, the performance of WE-PSO is compared with the standard PSO and two other initialization approaches Sobol-based PSO (SO-PSO) and Halton-based PSO (H-PSO). The findings indicate that WE-PSO is better than the standard multimodal problem-solving techniques. The results validate the efficacy and effectiveness of our approach. In comparison, the proposed approach is used for artificial neural network (ANN) learning and contrasted to the standard backpropagation algorithm, standard PSO, H-PSO, and SO-PSO, respectively. The results of our technique has a higher accuracy score and outperforms traditional methods. Also, the outcome of our work presents an insight on how the proposed initialization technique has a high effect on the quality of cost function, integration, and diversity aspects.


Author(s):  
Chunli Zhu ◽  
Yuan Shen ◽  
Xiujun Lei

Traditional template matching-based motion estimation is a popular but time-consuming method for vibration vision measurement. In this study, the particle swarm optimization (PSO) algorithm is improved to solve this time-consumption problem. The convergence speed of the algorithm is increased using the adjacent frames search method in the particle swarm initialization process. A flag array is created to avoid repeated calculation in the termination strategy. The subpixel positioning accuracy is ensured by applying the surface fitting method. The robustness of the algorithm is ensured by applying the zero-mean normalized cross correlation. Simulation results demonstrate that the average extraction error of the improved PSO algorithm is less than 1%. Compared with the commonly used three-step search algorithm, diamond search algorithm, and local search algorithm, the improved PSO algorithm consumes the least number of search points. Moreover, tests on real-world image sequences show good estimation accuracy at very low computational cost. The improved PSO algorithm proposed in this study is fast, accurate, and robust, and is suitable for plane motion estimation in vision measurement.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Di Zhou ◽  
Yajun Li ◽  
Bin Jiang ◽  
Jun Wang

Due to its fast convergence and population-based nature, particle swarm optimization (PSO) has been widely applied to address the multiobjective optimization problems (MOPs). However, the classical PSO has been proved to be not a global search algorithm. Therefore, there may exist the problem of not being able to converge to global optima in the multiobjective PSO-based algorithms. In this paper, making full use of the global convergence property of quantum-behaved particle swarm optimization (QPSO), a novel multiobjective QPSO algorithm based on the ring model is proposed. Based on the ring model, the position-update strategy is improved to address MOPs. The employment of a novel communication mechanism between particles effectively slows down the descent speed of the swarm diversity. Moreover, the searching ability is further improved by adjusting the position of local attractor. Experiment results show that the proposed algorithm is highly competitive on both convergence and diversity in solving the MOPs. In addition, the advantage becomes even more obvious with the number of objectives increasing.


2020 ◽  
Vol 10 (20) ◽  
pp. 7314
Author(s):  
Mutaz Ryalat ◽  
Hazem Salim Damiri ◽  
Hisham ElMoaqet

Dynamic positioning (DP) control system is an essential module used in offshore ships for accurate maneuvering and maintaining of ship’s position and heading (fixed location or pre-determined track) by means of thruster forces being generated by controllers. In this paper, an interconnection and damping assignment-passivity based control (IDA-PBC) controller is developed for DP of surface ships. The design of the IDA-PBC controller involves a dynamic extension utilizing the coordinate transformation which adds damping to some coordinates to ensure asymptotic stability and adds integral action to enhance the robustness of the system against disturbances. The particle swarm optimization (PSO) technique is one of the the population-based optimization methods that has gained the attention of the control research communities and used to solve various engineering problems. The PSO algorithm is proposed for the optimization of the IDA-PBC controller. Numerical simulations results with comparisons illustrate the effectiveness of the new PSO-tuned dynamic IDA-PBC controller.


2009 ◽  
Vol 413-414 ◽  
pp. 661-668
Author(s):  
Ricardo Perera ◽  
Sheng En Fang ◽  
Antonio Ruiz

In the context of real-world damage detection problems, the lack of a clear objective function advises to perform simultaneous optimizations of several objectives with the purpose of improving the performance of the procedure. Evolutionary algorithms have been considered to be particularly appropriate to these kinds of problems. However, evolutionary techniques require a relatively long time to obtain a Pareto front of high quality. Particle swarm optimization (PSO) is one of the newest techniques within the family of optimization algorithms. The PSO algorithm relies only on two simple PSO self-updating equations whose purpose is to try to emulate the best global individual found, as well as the best solutions found by each individual particle. Since an individual obtains useful information only from the local and global optimal individuals, it converges to the best solution quickly. PSO has become very popular because of its simplicity and convergence speed. However, there are many associated problems that require further study for extending PSO in solving multi-objective problems. The goal of this paper is to present the first application of PSO to multiobjective damage identification problems and investigate the applicability of several variations of the basic PSO technique. The potential of combining evolutionary computation and PSO concepts for damage identification problems is explored in this work by using a multiobjective evolutionary particle swarm optimization algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ying-Hui Jia ◽  
Jun Qiu ◽  
Zhuang-Zhuang Ma ◽  
Fang-Fang Li

The balance between exploitation and exploration essentially determines the performance of a population-based optimization algorithm, which is also a big challenge in algorithm design. Particle swarm optimization (PSO) has strong ability in exploitation, but is relatively weak in exploration, while crow search algorithm (CSA) is characterized by simplicity and more randomness. This study proposes a new crow swarm optimization algorithm coupling PSO and CSA, which provides the individuals the possibility of exploring the unknown regions under the guidance of another random individual. The proposed CSO algorithm is tested on several benchmark functions, including both unimodal and multimodal problems with different variable dimensions. The performance of the proposed CSO is evaluated by the optimization efficiency, the global search ability, and the robustness to parameter settings, all of which are improved to a great extent compared with either PSO and CSA, as the proposed CSO combines the advantages of PSO in exploitation and that of CSA in exploration, especially for complex high-dimensional problems.


2014 ◽  
Vol 989-994 ◽  
pp. 1582-1585
Author(s):  
Li Xia Lv ◽  
Xiang Yu Lin

According to the question of the standard particle swarm optimization (PSO) algorithm is prone to premature and no convergence phenomenon, this paper proposed an algorithm of Inflection nonlinear global PSO. The algorithm introduces nonlinear trigonometric factor and the global average location information in the formula of velocity updating. It take advantage of the convex of the triangle function cause the particles early in the larger velocity search maintain long time and in the later searching with smaller speed maintain long time, use the global average position information make the population can use more information to update their position. The method are applied in optimizing in the parameters of the main steam temperature control system and furnace pressure control system for comparison, the results show that the method in the search speed and precision than standard PSO has significantly improved.


Author(s):  
Gerardo A. Laguna-Sánchez ◽  
Mauricio Olguí­n-Carbajal ◽  
Nareli Cruz-Cortés ◽  
Ricardo Barrón-Fernández ◽  
Jesús A. Álvarez-Cedillo

The Particle Swarm Optimization (PSO) algorithm is a well known alternative for global optimization based on a bio‐inspired heuristic. PSO has good performance, low computational complexity and few parameters. Heuristic techniques have been widely studied in the last twenty years and the scientific community is still interested in technological alternatives that accelerate these algorithms in order to apply them to bigger and more complex problems. This article presents an empirical study of some parallel variants for a PSO algorithm, implemented on a Graphic Process Unit (GPU) device with multi‐thread support and using the most recent model of parallel programming for these cases. The main idea is to show that, with the help of a multithreading GPU, it is possible to significantly improve the PSO algorithm performance by means of a simple and almost straightforward parallel programming, getting the computing power of cluster in a conventional personal computer.


Sign in / Sign up

Export Citation Format

Share Document