scholarly journals Decreasing the level of hemicelluloses in sow's lactation diet affects the milk composition and post-weaning performance of low birthweight piglets.

Author(s):  
Francesco Palumbo ◽  
Giuseppe Bee ◽  
Paolo Trevisi ◽  
Marion Girard

Abstract Hemicelluloses (HC) are polysaccharides constituents of the cell walls of plants. They are fermented in the gut to produce volatile fatty acids (VFA). The present study investigated the effects of decreasing HC level in sow's lactation diet on sow performances, offspring development and milk composition. From 110 days (d) of gestation until weaning (26±0.4 d post-farrowing), 40 Swiss Large White sows were assigned to one of the four dietary treatments: (1) T12 (HC: 120.6 g/kg), (2) T11 (HC: 107.6 g/kg), (3) T9 (HC: 86.4g/kg) and (4) T7 (HC: 71.9 g/kg). Milk was collected at 3 and 17d of lactation. At birth, piglets were divided into two groups according to their birthweight (BtW): normal (N-BtW; BtW > 1.20 kg) or low (L-BtW; BtW ≤ 1.20 kg). Decreased HC levels in the maternal diet linearly increased (P ≤ 0.05) the body weight of L-BtW piglets at two weeks post-weaning and linearly decreased (P ≤ 0.05) diarrhoea incidence and duration in this category. The concentrations of copper, threonine and VFA, as well as the proportion of butyrate, in milk linearly increased (P ≤ 0.05), whereas lactose content linearly decreased (P ≤ 0.05) with decreased HC in the maternal diet. The present study provides evidence that decreasing HC level in sow's lactation diet can positively affect the composition and VFA profile of milk and ultimately favour the growth and health of L-BtW piglets.

1970 ◽  
Vol 24 (1) ◽  
pp. 129-144 ◽  
Author(s):  
N. J. Hoogenraad ◽  
F. J. R. Hird ◽  
R. G. White ◽  
R. A. Leng

1.Bacillus subtilisandEscherichia coliwere grown on14C-labelled glucose and used for the preparation of labelled whole cells, cell walls, cell contents and peptidoglycan.2. The radioactive samples were injected into the abomasum of sheep and the14C appearing in expired air, plasma glucose, urine and faeces was determined. Whole cells were also injected into the rumen and the incorporation of14C into volatile fatty acids was measured.3. All the bacterial preparations, including cell walls, were extensively digested and absorbed, Less than 15% of the radioactivity was recovered in the faeces.4. Up to 20% of the radioactivity injected was recovered in expired carbon dioxide with only 2.4–8.1% passing through the glucose pool.5. It has been calculated that under the conditions of the experiment 18.5 % of the total glucose entering the body pool of glucose in 24 h was derived from bacterial carbon.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1038-1038
Author(s):  
Michael Miklus ◽  
Pedro Prieto ◽  
Cynthia Barber ◽  
Robert Rhoads ◽  
Samer El-Kadi

Abstract Objectives The objectives of this study were to determine the effect of 2’fucosyllactose (2’FL) and fat blends on growth, body composition and fatty acid profile of the liver and brain using the neonatal pig as a model for the human infant. Methods Pigs (3 d old) were randomly assigned to either: 1. control, 2. Palm Olein (PO) fat blend – Low 2'-FL, 3. PO – High 2'-FL, 4. High oleic acid (HO) – Low 2'-FL, 5. HO FB – High 2'-FL, 6. PO FB – GLA, or 7. kept with their sows. Pigs in groups 1 to 6 received 250 ml·kg−1·d−1 of formula in 5 equal meals for 15 d. On day 14 of the study, groups 1–6 received intraperitoneal E. coli LPS challenge at 100 µg·kg−1 weight. Results Body weight was greater for piglets fed by sows than those in the other groups (P < 0.001). In addition, % fat and bone mineral content were higher in the sow-fed group while lean % was less sow-fed piglets (group 7) compared with those in the other groups (P < 0.05). Only longissimus weight expressed as a % of body weight, was greater for group 7 compared with all other groups (P < 0.001). Soleus, semitendinosus, brain, heart and spleen weights as a % of body weight were similar across all groups. However, liver weight as a % of body weight was greater in groups 1–6 (3.7%) compared with group 7 (2.8%; P < 0.001). The proportion of brain 16:1 fatty acid was less (0.83%) for groups 1–6 than for group 7 pigs (1.08%; P < 0.0001). The proportion of 20:3 N6 was greatest (0.66%) for group 3 compared with groups 1 and 4 (0.55%; P < 0.05). In addition, the proportion of 20:5 N3 was greatest (0.12%) for group 3 compared with groups 1 and 7 (0.07%; P < 0.05). The proportion of liver 16:1, 18:0, and 18:1 cis-11 fatty acids were greater for group 7 (2.3, 23, 2.2%) than groups 1–6 (0.2, 20, 1.2%; P < 0.0001). Conversely, the contribution of 14:0, 18:1 cis-9, 18:3 N6 cis-6,9,12, and 22:6 N3 were greater for pigs in groups 1–6 (1.3, 0.6, and 14, 7.8%) compared with those in group 7 (0.5, 8.5, 0.2 and 3.5%; P < 0.0001). Conclusions Our data suggest that feeding 2’fucosyllactose had no effect on the body weight gain and composition in neonatal pigs. Our data also suggest that dietary fatty acids have a greater effect on liver than on brain fatty acid composition. Funding Sources Funding for the work was provided by Perrigo Nutritionals, LLC.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2679
Author(s):  
Lihuai Yu ◽  
Hongmin Li ◽  
Zhong Peng ◽  
Yuzhu Ge ◽  
Jun Liu ◽  
...  

This study examined the impact of early weaning on antioxidant function in piglets. A total of 40 Duroc × Landrace × Large White, 21-day-old piglets (half male and half female) were divided into suckling groups (SG) and weaning groups (WG). Piglets in WG were weaned at the 21st day, while the piglets in SG continued to get breastfed. Eight piglets from each group were randomly selected and slaughtered at 24th-day (SG3, WG3) and 28th-day old (SG7, WG7). The body weight, liver index, hepatocyte morphology, antioxidant enzymes activity, gene expression of antioxidant enzymes, and Nrf2 signaling in the liver of piglets were measured. The results showed that weaning caused decreased body weight (p < 0.01), lower liver weight (p < 0.01), and decreased the liver organ index (p < 0.05) of piglets. The area and size of hepatocytes in the WG group was smaller than that in the SG group (p < 0.05). We also observed that weaning reduced the activity of superoxide dismutase (SOD) and catalase (CAT) (p < 0.05) in the liver of piglets. Relative to the SG3 group, the gene expression of GSH-Px in liver of WG3 was significantly reduced (p < 0.05). The gene expression of Nrf2 in the SG3 group was higher than that in the WG3 group (p < 0.01). The gene expression of NQO1 in the SG7 group was higher than that in the WG7 group (p < 0.05). In conclusion, weaning resulted in lower weight, slowed liver development, and reduced antioxidant enzymes activity, thereby impairing liver antioxidant function and suppressing piglet growth.


ZOOTEC ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 233
Author(s):  
Jein Rinny Leke ◽  
F.N. Sompie ◽  
E. Wantasen ◽  
T. Widyastuti ◽  
E.H.B. Sondakh

INTERNAL ORGANS CHAR ACTERISTICS OF NATIVE CHICKEN FED BY COCONUT OIL (Cocos nucifera) ON DIET. The research was carried to determine the internal organs characteristics of buras chickens fed coconut (Cocos mucifera) oil in diet. A total 100 unsexed buras chickens was used in this experiment. The design used in this study was a completely randomized design (CRD) consisting of 5 treatments and 5 replications (4 hens each). The data were subjected to analysis of variance, when the treatments indicated significant effect it was continued Duncan’s Multiple Range Test. Five dietary treatments containing 0, 0.5%, 1 %, 1,5%, and 2% levels of coconut oil (CO) with five replicates were applied to chickens.  Parameters measured were body weight, heart, liver, pancreas  and gizzard weight. Result showed that CO in the ration significantly increased the body weight (P<0.01) but did not affect to heart weight, liver weight, pancreas weight and gizzard weight.(P>0.05) It can be concluded that coconut oil in the diet can’t increase the internal organ characteristics. We can gave the 2% CO in the diet for the best results. Key words: Internal Organs, Coconut Oil, Buras Chickens


2013 ◽  
Vol 9 (5) ◽  
pp. 20130593 ◽  
Author(s):  
Lee A. Fuiman ◽  
Cynthia K. Faulk

Fatty acid composition of eggs affects development, growth and ecological performance of fish embryos and larvae, with potential consequences for recruitment success. Essential fatty acids in eggs derive from the maternal diet, and the time between ingestion and deposition in eggs is ecologically important but unknown. We examined the dynamics of diet–egg transfer of arachidonic acid (ARA) in the batch-spawning fish, red drum ( Sciaenops ocellatus ), by measuring ARA concentrations in eggs after a single diet shift and during a period of irregular variations in diet. ARA concentrations in eggs changed within 2–16 days of a diet shift. The rate of change was proportional to the magnitude of the shift, with no evidence of equilibration. These results are not consistent with eggs being assembled entirely from accumulated body stores. The immediate source of ARA in eggs appears to be the recent diet. We propose that batch spawning produces rapid diet–egg transfer of ARA because it removes large amounts of fatty acids from the body and prevents equilibration. The immediacy of the diet–egg connection suggests that spawning migration combined with short-interval batch spawning may have evolved to take advantage of nutrients critical for offspring survival that are available at the spawning site.


1957 ◽  
Vol 1957 ◽  
pp. 3-15 ◽  
Author(s):  
D. G. Armstrong ◽  
K. L. Blaxter ◽  
N. McC. Graham

The work of the late Sir Joseph Barcroft and his collaborators (see Elsden & Phillipson, 1948) left little doubt that, in ruminants, the end products of the bacterial dissimilation of dietary carbohydrate included large amounts of the steam-volatile fatty acids—acetic, propionic and butyric acids. More recently, el Shazly (1952a, b) has shown that the steam-volatile fatty acids also arise together with ammonia during the bacterial breakdown of amino-acids in the rumen. Studies by Pfander & Phillipson (1953) and Schambye (1955) further indicate that the acids are absorbed from the digestive tract in amounts that suggest they make a major contribution to the energy requirement of the animal. Quantitative data relative to the amounts absorbed, however, are difficult to obtain. Carroll & Hungate (1954) have calculated that in cattle some 6,000-12,000 Cal. of energy are available from the acids produced by fermentation in the rumen. With sheep, Phillipson & Cuthbertson (1956) have calculated from the results of Schambye (1951a, b; 1955) that at least 600-1,200 Cal. of energy in the form of steam-volatile fatty acids could be absorbed every 24 hrs. Since the fasting heat production of the steer is about 6,500 Cal./24 hrs. and that of the sheep about 1,100 Cal./24 hrs. it is clear that if the fatty acids can be utilised efficiently by the body tissues, they could make a major contribution to the energy requirements, at least those for maintenance.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1092 ◽  
Author(s):  
Anna Lavery ◽  
Peadar G. Lawlor ◽  
Helen M. Miller ◽  
Elizabeth Magowan

This study investigated the effect of salmon oil in lactating sow diets and offering these diets in a phased dietary regimen to increase the energy density of the diet in late lactation. Sow and piglet productivity to weaning, the fatty acid profile of milk, piglet blood and tissues at weaning were the main parameters measured. Multiparous sows (n = 100) (Landrace × Large White) were offered dietary treatments from day 105 of gestation until weaning. Dietary treatments (2 × 2 factorial) included oil type (soya or salmon oil) and dietary regimen (Flat 14.5 MJ/kg DE diet offered until weaning or Phased 14.5 MJ/kg DE diet offered to day 14 of lactation then a second diet containing 15.5 MJ/kg DE offered from day 15 until weaning). Salmon oil inclusion increased the total proportion of n-3 fatty acids in colostrum (p < 0.001), milk (p < 0.001), piglet plasma (p < 0.01), adipose (p < 0.001), liver (p < 0.001) and muscle (p < 0.001). Increasing sow dietary energy level in late lactation increased the total n-3 fatty acids in milk (p < 0.001), piglet adipose (p < 0.01) and piglet muscle (p < 0.05). However, piglet growth to weaning did not improve.


2007 ◽  
Vol 293 (3) ◽  
pp. R1056-R1062 ◽  
Author(s):  
Jacqueline Férézou-Viala ◽  
Anne-France Roy ◽  
Colette Sérougne ◽  
Daniel Gripois ◽  
Michel Parquet ◽  
...  

Epidemiological and animal studies suggest that the alteration of hormonal and metabolic environment during fetal and neonatal development can contribute to development of metabolic syndrome in adulthood. In this paper, we investigated the impact of maternal high-fat (HF) diet on hypothalamic leptin sensitivity and body weight gain of offspring. Adult Wistar female rats received a HF or a control normal-fat (C) diet for 6 wk before gestation until the end of the suckling period. After weaning, pups received either C or HF diet during 6 wk. Body weight gain and metabolic and endocrine parameters were measured in the eight groups of rats formed according to a postweaning diet, maternal diet, and gender. To evaluate hypothalamic leptin sensitivity in each group, STAT-3 phosphorylation was measured in response to leptin or saline intraperitoneal bolus. Pups exhibited similar body weights at birth, but at weaning, those born to HF dams weighed significantly less (−12%) than those born to C dams. When given the HF diet, males and females born to HF dams exhibited smaller body weight and feed efficiency than those born to C dams, suggesting increased energy expenditure programmed by the maternal HF diet. Thus, maternal HF feeding could be protective against adverse effects of the HF diet as observed in male offspring of control dams: overweight (+17%) with hyperleptinemia and hyperinsulinemia. Furthermore, offspring of HF dams fed either C or HF diet exhibited an alteration in hypothalamic leptin-dependent STAT-3 phosphorylation. We conclude that maternal high-fat diet programs a hypothalamic leptin resistance in offspring, which, however, fails to increase the body weight gain until adulthood.


2012 ◽  
Vol 56 (2) ◽  
pp. 241-246
Author(s):  
Włodzimierz Nowak ◽  
Robert Mikuła ◽  
Małgorzata Kasprowicz-Potocka ◽  
Marta Ignatowicz ◽  
Andrzej Zachwieja ◽  
...  

Abstract The aim of the study was to determine the effect of the limitation of energy intake by restrictive dry matter intake in the faroff part (from -56 d to -22 d) of dry period on the colostrum quality and the calf immunological status. Thirty-eight Polish Holstein- Friesian Black and White multiparous cows and their calves were randomly allotted to one of the two dietary treatments in the far-off period. In group ADLIB, diet was offered ad libitum (2.0% body weight), while in group REST, dry matter intake was restricted to 1.5% of body weight. Lowered feed intake in the far-off period did not have a statistically significant influence on the quality of colostrum. On the 3rd d of calves’ life, serum concentrations of immunoglobulins, albumins, globulins, total protein, and IGF-1 were not affected by treatments of dam in the far-off period. The concentrations of total Ig and G and A immunoglobulins of 21-day-old calves from cows fed ad libitum during the far-off period was found to be significantly lower compared to REST group. No significant differences in birth weight and growth rate during the first 21 d of life were found. Limiting maternal diet in far-off period did not affect negatively colostrum quality and calves` immune response during early stages of their life.


Sign in / Sign up

Export Citation Format

Share Document