scholarly journals Explosive activity on Kīlauea’s Lower East Rift Zone fuelled by a volatile-rich, dacitic melt

2022 ◽  
Author(s):  
Penny Wieser ◽  
Marie Edmonds ◽  
Cheryl Gansecki ◽  
John Maclennan ◽  
Frances Jenner ◽  
...  

Magmas with matrix glass compositions ranging from basalt to dacite erupted from a series of 24 fissures in the first two weeks of the 2018 Lower East Rift Zone (LERZ) eruption of Kīlauea Volcano. Eruption styles ranged from low spattering and fountaining to strombolian activity. Major element trajectories in matrix glasses and melt inclusions hosted by olivine, pyroxene and plagioclase are consistent with variable amounts of fractional crystallization, with incompatible elements (e.g., Cl, F, H2O) becoming enriched by 4-5 times as melt MgO contents evolve from 6 to 0.5 wt%. The high viscosity and high H2O contents (~2 wt%) of the dacitic melts erupting at Fissure 17 account for the explosive Strombolian behavior exhibited by this fissure, in contrast to the low fountaining and spattering observed at fissures erupting basaltic to basaltic-andesite melts. Saturation pressures calculated from melt inclusions CO2-H2O contents indicate that the magma reservoir(s) supplying these fissures was located at ~2-3 km depth, which is in agreement with the depth of a dacitic magma body intercepted during drilling in 2005 (~2.5 km) and a seismically-imaged low Vp/Vs anomaly (~2 km depth). Nb/Y ratios in erupted products are similar to lavas erupted between 1955-1960, indicating that melts were stored and underwent variable amounts of crystallization in the LERZ for >60 years before being remobilized by a dike intrusion in 2018. We demonstrate that extensive fractional crystallization generates viscous and volatile-rich magma with potential for hazardous explosive eruptions, which may be lurking undetected at many ocean island volcanoes.

2021 ◽  
Vol 83 (4) ◽  
Author(s):  
L. R. Monnereau ◽  
B. S. Ellis ◽  
D. Szymanowski ◽  
O. Bachmann ◽  
M. Guillong

AbstractDense, glassy pyroclasts found in products of explosive eruptions are commonly employed to investigate volcanic conduit processes through measurement of their volatile inventories. This approach rests upon the tacit assumption that the obsidian clasts are juvenile, that is, genetically related to the erupting magma. Pyroclastic deposits within the Yellowstone-Snake River Plain province almost without exception contain dense, glassy clasts, previously interpreted as hyaloclastite, while other lithologies, including crystallised rhyolite, are extremely rare. We investigate the origin of these dense, glassy clasts from a coupled geochemical and textural perspective combining literature data and case studies from Cougar Point Tuff XIII, Wolverine Creek Tuff, and Mesa Falls Tuff spanning 10 My of silicic volcanism. These results indicate that the trace elemental compositions of the dense glasses mostly overlap with the vesiculated component of each deposit, while being distinct from nearby units, thus indicating that dense glasses are juvenile. Textural complexity of the dense clasts varies across our examples. Cougar Point Tuff XIII contains a remarkable diversity of clast appearances with the same glass composition including obsidian-within-obsidian clasts. Mesa Falls Tuff contains clasts with the same glass compositions but with stark variations in phenocryst content (0 to 45%). Cumulatively, our results support a model where most dense, glassy clasts reflect conduit material that passed through multiple cycles of fracturing and sintering with concurrent mixing of glass and various crystal components. This is in contrast to previous interpretations of these clasts as entrained hyaloclastite and relaxes the requirement for water-magma interaction within the eruptive centres of the Yellowstone-Snake River Plain province.


1980 ◽  
Vol 13 (2) ◽  
pp. 160-171 ◽  
Author(s):  
Alan N. Federman ◽  
Steven N. Carey

AbstractFive widespread tephra layers are found in late Quaternary sediments (0–130,000 yr B.P.) of the Eastern Mediterranean Sea. These layers have been correlated among abyssal cores and to their respective terrestrial sources by electron-probe microanalysis of glass and pumice shards. Major element variations are sufficient to discriminate unambiguously between the five major layers. Oxygen isotope stratigraphy in one of the cores studied was used to data four of the five layers. Two of the widespread layers are derived from explosive eruptions of the Santorini volcanic complex: the Minoan Ash (3370 yr B.P.) and the Acrotiri Ignimbrite (18,000 yr B.P.). An additional layer, found in one core only, is most likely correlated to the Middle Pumice Series of Santorini (approximately 100,000 yr B.P.). Two layers are correlated to deposits on the islands of Yali and Kos and date to 31,000 and 120,000 yr B.P., respectively. One layer originated from the Neapolitan area of Italy 38,000 yr B.P.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivan F. Chayka ◽  
Vadim S. Kamenetsky ◽  
Nikolay V. Vladykin ◽  
Alkiviadis Kontonikas-Charos ◽  
Ilya R. Prokopyev ◽  
...  

AbstractThe discrepancy between Na-rich compositions of modern carbonatitic lavas (Oldoinyo Lengai volcano) and alkali-poor ancient carbonatites remains a topical problem in petrology. Although both are supposedly considered to originate via fractional crystallization of a “common parent” alkali-bearing Ca-carbonatitic magma, there is a significant compositional gap between the Oldoinyo Lengai carbonatites and all other natural compositions reported (including melt inclusions in carbonatitic minerals). In an attempt to resolve this, we investigate the petrogenesis of Ca-carbonatites from two occurrences (Guli, Northern Siberia and Tagna, Southern Siberia), focusing on mineral textures and alkali-rich multiphase primary inclusions hosted within apatite and magnetite. Apatite-hosted inclusions are interpreted as trapped melts at an early magmatic stage, whereas inclusions in magnetite represent proxies for the intercumulus environment. Melts obtained by heating and quenching the inclusions, show a progressive increase in alkali concentrations transitioning from moderately alkaline Ca-carbonatites through to the “calcite CaCO3 + melt = nyerereite (Na,K)2Ca2(CO3)3” peritectic, and finally towards Oldoinyo Lengai lava compositions. These results give novel empirical evidence supporting the view that Na-carbonatitic melts, similar to those of the Oldoinyo Lengai, may form via fractionation of a moderately alkaline Ca-carbonatitic melt, and therefore provide the “missing piece” in the puzzle of the Na-carbonatite’s origin. In addition, we conclude that the compositions of the Guli and Tagna carbonatites had alkali-rich primary magmatic compositions, but were subsequently altered by replacement of alkaline assemblages by calcite and dolomite.


2020 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Daama Isaac ◽  
Mbowou Gbambie Isaac Bertrand ◽  
Yamgouot Ngounouno Fadimatou ◽  
Ntoumbe Mama ◽  
Ngounouno Ismaïla

The Garga-Sarali granitoids outcrop in form of large slabs and undistorted large blocks, into a schisto-gneissic basement. These rocks contain mainly muscovite and microcline, followed by K-feldspar, quartz, biotite, pyroxene, zircon and oxides, with coarse-grained to fine-grained textures. Geochemical analysis show that it belongs to differentiated rocks group (granodiorite-granite) with high SiO2 (up to 72 wt%) contents. Their genesis was made from a process of partial melting and fractional crystallization. These rocks are classified as belonging to I- and S-Type, meta-peraluminous, shoshonitic granites; belonging to the domain of volcanic arcs. The rare earth elements patterns suggest a source enriched of incompatible elements. The Nb-Ta and Ti negative anomalies from the multi-element patterns are characteristics of the subduction domains.  


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 419 ◽  
Author(s):  
Ilya Prokopyev ◽  
Anastasiya Starikova ◽  
Anna Doroshkevich ◽  
Yazgul Nugumanova ◽  
Vladislav Potapov

The mineral composition and melt inclusions of ultramafic lamprophyres of the Terina complex were investigated. The rocks identified were aillikites, mela-aillikites, and damtjernites, and they were originally composed of olivine macrocrysts and phenocrysts, as well as phlogopite phenocrysts in carbonate groundmass, containing phlogopite, clinopyroxene and feldspars. Minor and accessory minerals were fluorapatite, ilmenite, rutile, titanite, and sulphides. Secondary minerals identified were quartz, calcite, dolomite, serpentine, chlorite, rutile, barite, synchysite-(Ce), and monazite-(Ce). Phlogopite, calcite, clinopyroxene, Ca-amphibole, fluorapatite, magnetite, and ilmenite occurred as daughter-phases in melt inclusions. The melt inclusions also contained Fe–Ni sulphides, synchysite-(Ce) and, probably, anhydrite. The olivine macrocrysts included orthopyroxene and ilmenite, and the olivine phenocrysts included Cr-spinel and Ti-magnetite inclusions. Crystal-fluid inclusions in fluorapatite from damtjernites contain calcite, clinopyroxene, dolomite, and barite. The data that were obtained confirm that the ultramafic lamprophyres of the Terina complex crystallized from peridotite mantle-derived carbonated melts and they have not undergone significant fractional crystallization. The investigated rocks are considered to be representative of melts that are derived from carbonate-rich mantle beneath the Siberian craton.


2019 ◽  
Vol 56 (7) ◽  
pp. 715-737 ◽  
Author(s):  
Yong-hua Cao ◽  
David J. Good ◽  
Robert L. Linnen ◽  
Iain M. Samson

The Layered Series of the Midcontinent Rift related Coldwell Complex comprises thick sections of gabbro, without any known associated ultramafic rocks. It represents a major early intrusive unit of the Coldwell Complex and consists of thick accumulations of olivine gabbro and oxide augite melatroctolite. This study combines petrography, mineral chemistry, and lithogeochemistry to constrain the magma composition and petrogenesis of the Layered Series. The presence of cumulus orthoclase together with the observation that the Layered Series rocks plot in the alkaline field on a total alkali–silica diagram indicate that the Layered Series magma has an alkaline parentage. The stratigraphy of the Layered Series cannot be fully correlated between different areas using lithogeochemistry and mineral chemistry. This together with observed normal and reverse trends for mineral chemical compositions in different areas suggest that the processes related to magma emplacement and crystallization were different in different locations. The whole-rock concentrations of incompatible elements and the compositions of major minerals of the olivine gabbro and oxide augite melatroctolite units are chemically similar. However, major element lithogeochemistry is variable, dominantly due to differences in the abundances of olivine, clinopyroxene, plagioclase, and magnetite. An additional observation is that olivine and clinopyroxene are not in chemical equilibrium. Together, these observations are interpreted to reflect a combination of multiple injections of magma and crystal sorting in an open system.


2009 ◽  
Vol 73 (1) ◽  
pp. 59-82 ◽  
Author(s):  
J. Berger ◽  
N. Ennih ◽  
J.-C. C. Mercier ◽  
J.-P. LiéGeois ◽  
D. Demaiffe

The Saghro Cenozoic lavas form a bimodal suite of nephelinites (with carbonatite xenoliths) and phonolites emplaced in the Anti-Atlas belt of Morocco. Despite the paucity of samples with intermediate composition between the two main types of lava (only one phonotephrite flow is reported in this area), whole-rock major element modelling shows that the two main lithologies can be linked by fractional crystallization. The most primitive modelled cumulates are calcite-bearing olivine clinopyroxenites, whereas the final stages of differentiation are characterized by the formation of nepheline-syenite cumulates. This evolution trend is classically observed in plutonic alkaline massifs associated with carbonatites. Late-stage evolution is responsible for the crystallization of hainite- and delhayelite-bearing microdomains, for the transformation of aegirine-augite into aegirine (or augite into aegirine-augite), and for the crystallization of lorenzenite and a eudialyte-group mineral as replacement products of titanite. These phases were probably formed, either by crystallization from late residual peralkaline melts, or by reaction of pre-existing minerals with such melt, or hydrothermal peralkaline fluid.


2020 ◽  
Author(s):  
Thiebaut d'Augustin ◽  
Hélène Balcone-Boissard ◽  
Georges Boudon ◽  
Caroline Martel ◽  
Etienne Deloule ◽  
...  

<p>Dominica island experienced the largest explosive eruptions (ignimbrites) of the Lesser Antilles arc. The recent revised chronostratigraphy of the Morne Trois Pitons – Micotrin eruptive activity evidenced a series of plinian eruptions that occurred between 18 ka and 9 ka BP. Here we focus on these recent eruptions in order to determine the magma storage conditions at depth and volatile degassing budget. Volatile concentrations (H<sub>2</sub>O, CO<sub>2</sub>) in melt inclusions indicate storage conditions of 200 MPa (~6-8 km deep) and 860-880°C in agreement with experimental constraints from phase-equilibrium data. The magmas were thus stored shallower than those involved during the ignimbritic eruptions (~16 km deep). Magma composition and halogen ratios suggest a common magma origin for all eruptions of Morne Trois Pitons Micotrin volcano in the last 60 kyrs. In addition, for the first time, a complete degassing budget including H<sub>2</sub>O, CO<sub>2</sub>, SO<sub>2</sub>, F, Cl, and Br has been established for all these explosive eruptions. The estimation of their eruptive fluxes towards the atmosphere supports the potential important role of halogen elements in the modification of atmosphere chemistry. Br degassing budget was the same order of magnitude as S whereas F and Cl budgets were 1 and 2 orders of magnitude higher than these two species.</p>


2005 ◽  
Vol 142 (6) ◽  
pp. 651-658 ◽  
Author(s):  
E. MARTIN ◽  
O. SIGMARSSON

A pair of samples, from host lava and an included segregation vein from the Reykjanes Peninsula, Iceland, allows the assessment of a complete fractional crystallization of an olivine tholeiite at low pressure. The final product consists of silicic glasses with bimodal composition: trondhjemitic and more rarely granitic. Compilation of data on major element compositions of Icelandic silicic rocks reveals a clear difference from those of the segregation glasses. Fractional crystallization of basalts at low pressure is therefore not the most likely mechanism for the origin of silicic magmas in Iceland. Similar conclusions have been reached in studies on O- and Th-isotope compositions. On the other hand, the trondhjemitic compositions of the glasses in the segregation vein from Reykjanes Peninsula suggest that fractional crystallization of olivine tholeiites could have played a significant role during the formation of the very early continental crust.


Sign in / Sign up

Export Citation Format

Share Document