scholarly journals In Silico Modelling of Aortic Valve Implants – Predicting In Vitro Performance using Finite Element Analysis

2021 ◽  
Author(s):  
Robert Whiting ◽  
Elizabeth Sander ◽  
Claire Conway ◽  
Ted J Vaughan

The competing structural and hemodynamic considerations in valve design generally require a large amount of in vitro hydrodynamic and durability testing during development, often resulting in inefficient “trial-and-error” prototyping. While in silico modelling through Finite Element Analysis (FEA) has been widely used to inform valve design by optimizing structural performance, few studies have exploited the potential insight FEA could provide into critical hemodynamic performance characteristics of the valve. The objective of this study is to demonstrate the potential of FEA to predict the hydrodynamic performance of aortic valve implants obtained during development through in vitro testing. Several variations of surgical tri-leaflet aortic valves were de-signed and manufactured using a synthetic polymer and hydrodynamic testing carried out using a pulsatile flow rig according to ISO 5840, with bulk hydro-dynamic parameters measured. In silico models were developed in tandem and suitable surrogate measures were investigated as predictors of the hydro-dynamic parameters. Through regression analysis, the in silico parameters of leaflet coaptation area, geometric orifice area and opening pressure were found to be suitable indicators of experimental in vitro hydrodynamic param-eters: regurgitant fraction, effective orifice area and transvalvular pressure drop performance, respectively.

2001 ◽  
Vol 48 (6) ◽  
pp. 647-659 ◽  
Author(s):  
K.J. Grande-Allen ◽  
R.P. Cochran ◽  
P.G. Reinhall ◽  
K.S. Kunzelman

Author(s):  
Phong Phan ◽  
Anh Vo ◽  
Amirhamed Bakhtiarydavijani ◽  
Reuben Burch ◽  
Brian K. Smith ◽  
...  

Abstract Computational approaches, especially Finite Element Analysis (FEA), have been rapidly growing in both academia and industry during the last few decades. FEA serves as a powerful and efficient approach for simulating real-life experiments, including industrial product development, machine design, and biomedical research, particularly in biomechanics and biomaterials. Accordingly, FEA has been a "go-to" high biofidelic software tool to simulate and quantify the biomechanics of the foot-ankle complex, as well as to predict the risk of foot and ankle injuries, which are one of the most common musculoskeletal injuries among physically active individuals. This paper provides a review of the in silico FEA of the foot-ankle complex. First, a brief history of computational modeling methods and Finite Element (FE) simulations for foot-ankle models is introduced. Second, a general approach to build a FE foot and ankle model is presented, including a detailed procedure to accurately construct, calibrate, verify, and validate a FE model in its appropriate simulation environment. Third, current applications, as well as future improvements of the foot and ankle FE models, especially in the biomedical field, are discussed. Lastly, a conclusion is made on the efficiency and development of FEA as a computational approach in investigating the biomechanics of the foot-ankle complex. Overall, this review integrates insightful information for biomedical engineers, medical professionals, and researchers to conduct more accurate research on the foot-ankle FE models in the future.


2019 ◽  
Vol 63 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Toshiki Yamazaki ◽  
Natsuko Murakami ◽  
Shizuka Suzuki ◽  
Kazuyuki Handa ◽  
Masaru Yatabe ◽  
...  

2010 ◽  
Vol 28 (6) ◽  
pp. E11 ◽  
Author(s):  
Neil R. Crawford ◽  
Jeffery D. Arnett ◽  
Joshua A. Butters ◽  
Lisa A. Ferrara ◽  
Nikhil Kulkarni ◽  
...  

Different methods have been described by numerous investigators for experimentally assessing the kinematics of cervical artificial discs. However, in addition to understanding how artificial discs affect range of motion, it is also clinically relevant to understand how artificial discs affect segmental posture. The purpose of this paper is to describe novel considerations and methods for experimentally assessing cervical spine postural control in the laboratory. These methods, which include mechanical testing, cadaveric testing, and computer modeling studies, are applied in comparing postural biomechanics of a novel postural control arthroplasty (PCA) device versus standard ball-and-socket (BS) and ball-in-trough (BT) arthroplasty devices. The overall body of evidence from this group of tests supports the conclusion that the PCA device does control posture to a particular lordotic position, whereas BS and BT devices move freely through their ranges of motion.


Author(s):  
Nicole A. DeVries ◽  
Nicole A. Kallemeyn ◽  
Kiran H. Shivanna ◽  
Nicole M. Grosland

Due to the limited availability of human cadaveric specimens, sheep are often utilized for in vitro studies of various spinal disorders and surgical techniques. Understanding the similarities and differences between the human and sheep spine is crucial for constructing a valuable study and interpreting the results. Several studies have identified the anatomical similarities between the sheep and human spine; however these studies have been limited to quantifying the anatomic dimensions as opposed to the biomechanical responses [1–2]. Although anatomical similarities are important, biomechanical correspondence is imperative for studying the effects of disorders, surgical techniques, and implant designs. Studies by Wilke and colleagues [3] and Clarke et al. [4] have focused on experimental biomechanics of the sheep cervical functional spinal units (FSUs).


Sign in / Sign up

Export Citation Format

Share Document