scholarly journals Threat Vigilance and Intrinsic Amygdala Connectivity

2022 ◽  
Author(s):  
Peter Kirk ◽  
Avram J Holmes ◽  
Oliver Joe Robinson

A well documented amygdala-dorsomedial prefrontal circuit is theorized to promote attention to threat (‘threat vigilance’). Prior research has implicated a relationship between individual differences in trait anxiety/vigilance, engagement of this circuitry, and anxiogenic features of the environment (e.g. through threat-of-shock and movie-watching). In the present study, we predicted that—for those scoring high in self-reported anxiety and a behavioral measure of threat vigilance—this circuitry is chronically engaged, even in the absence of anxiogenic stimuli. Our analyses of resting-state fMRI data (N=639) did not, however, provide evidence for such a relationship. Nevertheless, in our planned exploratory analyses, we saw a relationship between threat vigilance behavior (but not self-reported anxiety) and intrinsic amygdala-periaqueductal gray connectivity. Here, we suggest this subcortical circuitry may be chronically engaged in hypervigilant individuals, but that the amygdala-prefrontal circuitry may only be engaged in response to anxiogenic stimuli.

2016 ◽  
Vol 28 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Andrew S. Kayser ◽  
Zdeňa Op de Macks ◽  
Ronald E. Dahl ◽  
Michael J. Frank

The onset of adolescence is associated with an increase in the behavioral tendency to explore and seek novel experiences. However, this exploration has rarely been quantified, and its neural correlates during this period remain unclear. Previously, activity within specific regions of the rostrolateral PFC (rlPFC) in adults has been shown to correlate with the tendency for exploration. Here we investigate a recently developed task to assess individual differences in strategic exploration, defined as the degree to which the relative uncertainty of rewards directs responding toward less well-evaluated choices, in 62 girls aged 11–13 years from whom resting state fMRI data were obtained in a separate session. Behaviorally, this task divided our participants into groups of explorers (n = 41) and nonexplorers (n = 21). When seed ROIs within the rlPFC were used to interrogate resting state fMRI data, we identified a lateralized connection between the rlPFC and posterior putamen/insula whose strength differentiated explorers from nonexplorers. On the basis of Granger causality analyses, the preponderant direction of influence may proceed from posterior to anterior. Together, these data provide initial evidence concerning the neural basis of exploratory tendencies at the onset of adolescence.


2021 ◽  
Vol 352 ◽  
pp. 109084
Author(s):  
Valeria Saccà ◽  
Alessia Sarica ◽  
Andrea Quattrone ◽  
Federico Rocca ◽  
Aldo Quattrone ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mirza Naveed Shahzad ◽  
Haider Ali ◽  
Tanzila Saba ◽  
Amjad Rehman ◽  
Hoshang Kolivand ◽  
...  

Data in Brief ◽  
2020 ◽  
Vol 29 ◽  
pp. 105213 ◽  
Author(s):  
Pradyumna Lanka ◽  
D. Rangaprakash ◽  
Sai Sheshan Roy Gotoor ◽  
Michael N. Dretsch ◽  
Jeffrey S. Katz ◽  
...  

Author(s):  
ST Lang ◽  
B Goodyear ◽  
J Kelly ◽  
P Federico

Background: Resting state functional MRI (rs-fMRI) provides many advantages to task-based fMRI in neurosurgical populations, foremost of which is the lack of the need to perform a task. Many networks can be identified by rs-fMRI in a single period of scanning. Despite the advantages, there is a paucity of literature on rs-fMRI in neurosurgical populations. Methods: Eight patients with tumours near areas traditionally considered as eloquent cortex participated in a five minute rs-fMRI scan. Resting-state fMRI data underwent Independent Component Analysis (ICA) using the Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) toolbox in FSL. Resting state networks (RSNs) were identified on a visual basis. Results: Several RSNs, including language (N=7), sensorimotor (N=7), visual (N=7), default mode network (N=8) and frontoparietal attentional control (n=7) networks were readily identifiable using ICA of rs-fMRI data. Conclusion: These pilot data suggest that ICA applied to rs-fMRI data can be used to identify motor and language networks in patients with brain tumours. We have also shown that RSNs associated with cognitive functioning, including the default mode network and the frontoparietal attentional control network can be identified in individual subjects with brain tumours. While preliminary, this suggests that rs-fMRI may be used pre-operatively to localize areas of cortex important for higher order cognitive functioning.


Author(s):  
Ilknur Icke ◽  
Nicholas A. Allgaier ◽  
Christopher M. Danforth ◽  
Robert A. Whelan ◽  
Hugh P. Garavan ◽  
...  

2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Joshua Henk Balsters ◽  
Valerio Zerbi ◽  
Jerome Sallet ◽  
Nicole Wenderoth ◽  
Rogier B Mars

With the increasing necessity of animal models in biomedical research, there is a vital need to harmonise findings across species by establishing similarities and differences in rodent and primate neuroanatomy. Using connectivity fingerprint matching, we compared cortico-striatal circuits across humans, non-human primates, and mice using resting-state fMRI data in all species. Our results suggest that the connectivity patterns for the nucleus accumbens and cortico-striatal motor circuits (posterior/lateral putamen) were conserved across species, making them reliable targets for cross-species comparisons. However, a large number of human and macaque striatal voxels were not matched to any mouse cortico-striatal circuit (mouse->human: 85% unassigned; mouse->macaque 69% unassigned; macaque->human; 31% unassigned). These unassigned voxels were localised to the caudate nucleus and anterior putamen, overlapping with executive function and social/language regions of the striatum and connected to prefrontal-projecting cerebellar lobules and anterior prefrontal cortex, forming circuits that seem to be unique for non-human primates and humans.


Sign in / Sign up

Export Citation Format

Share Document